Direct Evidence for Charge Compensation-Induced Large Magnetoresistance in Thin WTe2.

Since the discovery of extremely large nonsaturating magnetoresistance (MR) in WTe2, much effort has been devoted to understanding the underlying mechanism, which is still under debate. Here, we explicitly identify the dominant physical origin of the large nonsaturating MR through in situ tuning of the magneto-transport properties in thin WTe2 film. With an electrostatic doping approach, we observed a nonmonotonic gate dependence of the MR. The MR reaches a maximum (10600%) in thin WTe2 film at certain gate voltage where electron and hole concentrations are balanced, indicating that the charge compensation is the dominant mechanism of the observed large MR. Besides, we show that the temperature-dependent magnetoresistance exhibits similar tendency with the carrier mobility when the charge compensation is retained, revealing that distinct scattering mechanisms may be at play for the temperature dependence of magneto-transport properties. Our work would be helpful for understanding mechanism of the large MR in other nonmagnetic materials and offers an avenue for achieving large MR in the nonmagnetic materials with electron-hole pockets.

[1]  F. Miao,et al.  Proximity-Induced Superconductivity with Subgap Anomaly in Type II Weyl Semi-Metal WTe2. , 2018, Nano letters.

[2]  C. Felser,et al.  Thermopower and Unconventional Nernst Effect in the Predicted Type-II Weyl Semimetal WTe2. , 2018, Nano letters.

[3]  Shaomin Li,et al.  Superconductivity in Potassium-Intercalated T d-WTe2. , 2018, Nano letters.

[4]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[5]  Wenjin Zhao,et al.  Gate-induced superconductivity in a monolayer topological insulator , 2018, Science.

[6]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[7]  Z. Sheng,et al.  Origin of the extremely large magnetoresistance in topological semimetal PtS n 4 , 2018 .

[8]  Xuan Luo,et al.  Origin of magnetoresistance suppression in thin γ−MoTe2 , 2018, Physical Review B.

[9]  Quansheng Wu,et al.  Extremely large magnetoresistance in the topologically trivial semimetal α−WP2 , 2018, Physical Review B.

[10]  Q. Gibson,et al.  Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe2 , 2017, 1711.05002.

[11]  Haixin Chang,et al.  Centimeter-Scale, Large-Area, Few-Layer 1T′-WTe2 Films by Chemical Vapor Deposition and Its Long-Term Stability in Ambient Condition , 2018 .

[12]  Baigeng Wang,et al.  Tuning the electrical transport of type II Weyl semimetal WTe2 nanodevices by Mo doping , 2018, Nanotechnology.

[13]  L. Pi,et al.  Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe 2 , 2017, Chinese Physics Letters.

[14]  Kenji Watanabe,et al.  Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal , 2017, Science.

[15]  D. Sarma,et al.  Temperature-independent band structure of WTe2 as observed from angle-resolved photoemission spectroscopy , 2017 .

[16]  W. Kwok,et al.  Separation of electron and hole dynamics in the semimetal LaSb , 2017, 1708.05416.

[17]  Jiannong Wang,et al.  Thickness dependent magneto transport properties of WTe 2 thin films , 2017 .

[18]  C. Felser,et al.  Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2 , 2017, Nature Communications.

[19]  Z. Zeng,et al.  Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes , 2017, Nanotechnology.

[20]  S. Dou,et al.  Thickness-dependent electronic structure in WTe2 thin films , 2017, Physical Review B.

[21]  Jian‐Hao Chen,et al.  Gate tunable magneto-resistance of ultra-thin W Te2 devices , 2017, 1702.05876.

[22]  R. Cava,et al.  Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe_{2}. , 2017, Physical review letters.

[23]  Kenji Watanabe,et al.  Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe 2 , 2017, 1701.08839.

[24]  Guanghou Wang,et al.  Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2 , 2017 .

[25]  Hai-Zhou Lu,et al.  Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. , 2017, Nano letters.

[26]  M. Burghard,et al.  Tuning the magnetoresistance of ultrathin WTe2 sheets by electrostatic gating. , 2016, Nanoscale.

[27]  X. Wan,et al.  Temperature effect on lattice and electronic structures of WTe2 from first-principles study , 2016, 1609.03716.

[28]  Wenshuai Gao,et al.  Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi_{2}. , 2016, Physical review letters.

[29]  Yan-Feng Chen,et al.  Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.

[30]  F. Miao,et al.  Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.

[31]  Fan Ye,et al.  Environmental Instability and Degradation of Single- and Few-Layer WTe2 Nanosheets in Ambient Conditions. , 2016, Small.

[32]  H. Wong,et al.  High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2. , 2016, ACS nano.

[33]  J. Cha,et al.  Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation. , 2016, ACS applied materials & interfaces.

[34]  M. Chou,et al.  Spin texture in type-II Weyl semimetal WTe 2 , 2016, 1606.00085.

[35]  Yulin Chen,et al.  Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals , 2016, Scientific Reports.

[36]  A. Morpurgo,et al.  Direct Observation of a Long-Range Field Effect from Gate Tuning of Nonlocal Conductivity. , 2016, Physical review letters.

[37]  R. Cava,et al.  Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 , 2016, Nature Communications.

[38]  W. Kwok,et al.  Origin of the turn-on temperature behavior in WTe2 , 2015, 1510.06976.

[39]  A. Morpurgo,et al.  Tuning magnetotransport in a compensated semimetal at the atomic scale , 2015, Nature Communications.

[40]  M. Fuhrer,et al.  Breakdown of compensation and persistence of nonsaturating magnetoresistance in gated WT e 2 thin flakes , 2015, 1509.03623.

[41]  J. Thompson,et al.  Hall effect in the extremely large magnetoresistance semimetal WTe2 , 2015, 1509.01463.

[42]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[43]  R. Arita,et al.  Temperature-Induced Lifshitz Transition in WTe2. , 2015, Physical review letters.

[44]  W. Kwok,et al.  Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}. , 2015, Physical review letters.

[45]  Q. Gibson,et al.  Correlation of crystal quality and extreme magnetoresistance of WTe2 , 2015, 1506.04823.

[46]  L. Balicas,et al.  Role of spin-orbit coupling and evolution of the electronic structure of WTe 2 under an external magnetic field , 2015, 1505.01242.

[47]  Timur K. Kim,et al.  Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2. , 2015, Physical review letters.

[48]  Juan Liu,et al.  Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2. , 2015, Physical review letters.

[49]  Jiaqiang Yan,et al.  Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals , 2015, 1502.04465.

[50]  Zhongxian Zhao,et al.  Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride , 2015, Nature Communications.

[51]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[52]  S. Y. Li,et al.  Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2: Quantum Oscillation Study. , 2014, Physical review letters.

[53]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[54]  R. Cava,et al.  Electronic structure basis for the extraordinary magnetoresistance in WTe2. , 2014, Physical review letters.

[55]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[56]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[57]  A. Wilson,et al.  The theory of the magneto-resistance effects in metals , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.