The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.

[1]  Akira Hirata,et al.  The X-ray crystal structure of RNA polymerase from Archaea , 2008, Nature.

[2]  D. Vassylyev,et al.  Allosteric control of the RNA polymerase by the elongation factor RfaH , 2007, Nucleic acids research.

[3]  Robert Landick,et al.  A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. , 2007, Molecular cell.

[4]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[5]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[6]  Irina Artsimovitch,et al.  Structural basis for substrate loading in bacterial RNA polymerase , 2007, Nature.

[7]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[8]  B. Shafer,et al.  Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil , 2006, Genetics.

[9]  T. Tahirov,et al.  Structural basis of transcription inhibition by antibiotic streptolydigin. , 2005, Molecular cell.

[10]  A. D. Clark,et al.  Inhibition of Bacterial RNA Polymerase by Streptolydigin: Stabilization of a Straight-Bridge-Helix Active-Center Conformation , 2005, Cell.

[11]  Arkady Mustaev,et al.  A Ratchet Mechanism of Transcription Elongation and Its Control , 2005, Cell.

[12]  H. Faulstich,et al.  Fifty years of amanitin , 1991, Experientia.

[13]  J. Strathern,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 2005 .

[14]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[15]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[16]  Y. Nedialkov,et al.  α-Amanitin Blocks Translocation by Human RNA Polymerase II* , 2004, Journal of Biological Chemistry.

[17]  Y. Nedialkov,et al.  Alpha-amanitin blocks translocation by human RNA polymerase II. , 2004, The Journal of biological chemistry.

[18]  A. Greenleaf,et al.  Analysis of the gene encoding the largest subunit of RNA polymerase II in Drosophila , 2004, Molecular and General Genetics MGG.

[19]  Hiroshi Handa,et al.  NTP-driven Translocation by Human RNA Polymerase II* , 2003, The Journal of Biological Chemistry.

[20]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[21]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[22]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[23]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[24]  Patrick Cramer,et al.  Structural basis of transcription: α-Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Patrick Cramer,et al.  Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Erie,et al.  Allosteric Binding of Nucleoside Triphosphates to RNA Polymerase Regulates Transcription Elongation , 2001, Cell.

[27]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[28]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[29]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[30]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[31]  P. Cramer,et al.  Architecture of RNA polymerase II and implications for the transcription mechanism. , 2000, Science.

[32]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[33]  J. Greenblatt,et al.  Stimulation of Transcription by Mutations Affecting Conserved Regions of RNA Polymerase II , 1998, Journal of bacteriology.

[34]  P. Sudarsanam,et al.  The SAGA of Spt proteins and transcriptional analysis in yeast: past, present, and future. , 1998, Cold Spring Harbor symposia on quantitative biology.

[35]  M. Rudd,et al.  Amanitin Greatly Reduces the Rate of Transcription by RNA Polymerase II Ternary Complexes but Fails to Inhibit Some Transcript Cleavage Modes* , 1996, The Journal of Biological Chemistry.

[36]  Fred Winston,et al.  Construction of a set of convenient saccharomyces cerevisiae strains that are isogenic to S288C , 1995, Yeast.

[37]  R. Landick,et al.  Termination-altering amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. , 1994, Genes & development.

[38]  J. Archambault,et al.  Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II , 1992, Molecular and cellular biology.

[39]  D. Luse,et al.  The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'----5' direction in the presence of elongation factor SII. , 1992, Genes & development.

[40]  R. Young,et al.  Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. , 1991, Molecular and cellular biology.

[41]  Fred Winston,et al.  Methods in Yeast Genetics: A Laboratory Course Manual , 1990 .

[42]  G. Fink,et al.  Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. J. Sweeney Mycophenolic acid and its mechanism of action in cancer and psoriasis. , 1977, The Japanese journal of antibiotics.