A constitutive law for the mechanical behavior of Zr 702α

Abstract A phenomenological law is proposed for the description of the mechanical behavior of Zr 702α. The identification of the parameters of the constitutive law, from macroscopic stress–strain curves of polycrystalline samples deformed in channel die compression at room temperature, indicates a good description of experiment. The implementation of the phenomenological law into a finite element code, with a Coulomb law for a more realistic description of the experimental conditions, shows good agreements between the experimental and calculated curves, and allows to describe the evolution of stress heterogeneities and of the parameters of the identified law in the samples with the plastic deformation. Moreover, the analysis of the identified parameters, from calculations performed with a self-consistent model with the initial textures of the analyzed samples, confirms the role of the active deformations modes during plastic deformation.

[1]  A. Akhtar,et al.  Plastic deformation of zirconium single crystals , 1971 .

[2]  R. Ballinger,et al.  The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2 , 1984 .

[3]  O. Sherby,et al.  Large strain deformation of polycrystalline metals at low homologous temperatures , 1975 .

[4]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[5]  E. Tenckhoff The development of the deformation texture in zirconium during rolling in sequential passes , 1978 .

[6]  A. Akhtar Basal slip in zirconium , 1973 .

[7]  P. Merle Evidence of pyramidal slip mode in cold-rolled Zircaloy-4 sheets , 1987 .

[8]  A. Molinari,et al.  Tuning a self consistent viscoplastic model by finite element results—I. Modeling , 1994 .

[9]  John J. Jonas,et al.  Prediction of steel flow stresses at high temperatures and strain rates , 1991 .

[10]  N. Christodoulou Evolution of the Bauschinger effect in tension and compression in Zircaloy-2 , 1989 .

[11]  M. Gaspérini,et al.  Grain orientation effects in Zr702α polycrystalline samples deformed in channel die compression at room temperature , 1998 .

[12]  Adinel Gavrus,et al.  Identification automatique des paramètres rhéologiques par analyse inverse , 1996 .

[13]  H. Numakura,et al.  〈1 123〉{1011} slip in zirconium , 1991 .

[14]  D. Lloyd,et al.  The structure and properties of some heavily cold worked aluminum alloys , 1980 .

[15]  C. M. Sellars,et al.  Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation , 1969 .

[16]  A. Molinari,et al.  Tuning a self consistent viscoplastic model by finite element results—II. Application to torsion textures , 1994 .

[17]  P. Robinet Étude expérimentale et modélisation du comportement viscoplastique anisotrope du zircaloy 4 dans deux états métallurgiques , 1995 .