Optical Rotatory Dispersion of Polypeptides in the Near‐Infrared Region

For the first time ORD measurements in the near‐infrared region from 0.7 to 2.0 μ for well‐known polypeptides, namely, poly(γ‐benzyl L‐glutamate), poly(L‐glutamic acid), poly‐L‐lysine·HCl, poly‐S‐carbobenzoxymethyl‐L‐cysteine, and Bombyx mori silk fibroin, were carried out. It was found that the value of the optical activity infrared term, which is proportional to the sum of rotational strengths of vibrational transitions, depends on polypeptide conformation. The optical activity infrared term value is equal to zero for the random‐coil conformation, it is small but exceeds the measurement error for the α‐helical state, and finally, for the β conformation it is an order of magnitude higher than for the α‐helical state. The obtained results permit one to hope that on the basis of ORD measurement in the near‐infrared region it will be possible to suggest a method of determining the β‐form content in polypeptides and proteins

[1]  A. Moscowitz,et al.  Optical Activity of Vibrational Origin. I. A Model Helical Polymer , 1968 .

[2]  J. T. Yang,et al.  The disordered and beta conformations of silk fibroin in solution. , 1968, Biochemistry.

[3]  I. Tinoco,et al.  Optical Rotation of Oriented Helices. III. Calculation of the Rotatory Dispersion and Circular Dichroism of the Alpha‐ and 310‐Helix , 1967 .

[4]  G. Fasman,et al.  The conformational transitions of uncharged poly-L-lysine. Alpha helix-random coil-beta structure. , 1967, Biochemistry.

[5]  H. Günthard,et al.  Spectropolarimeter for the Infrared (2-8 micro). , 1966, Applied optics.

[6]  H. Wyss,et al.  Finite Slit-Width Effect in Spectropolarimeters , 1966 .

[7]  J T Yang,et al.  OPTICAL ROTATORY DISPERSION AND CIRCULAR DICHROISM , 1969 .

[8]  Betty M. Davidson,et al.  The optical rotatory dispersion of the beta structure of poly-L-lysine and poly-L-serine. , 1966, Biochemical and biophysical research communications.

[9]  H. Günthard,et al.  Optische Aktivität von 6, 7-Diphenyl-dinaphto-(2′,1′:1,2;1″, 2″:3,4)-5,8-diaza-cyclooctatetraen (I) und 3′,6″-Dimethyl-1,2:3,4-dibenz-1,3-cycloheptadien-6-on (II) im Infrarot , 1966 .

[10]  Jen-Tsi Yang,et al.  Effect of Salts and Dioxane on the Coiled Conformation of Poly-L-glutamic Acid in Aqueous Solution* , 1965 .

[11]  J. Cassim,et al.  The effects of solvent environment on the optical rotatory dispersion parameters of polypeptides. I. Studies on poly-gamma-benzyl-L-glutamate. , 1965, Biophysical journal.

[12]  Ptitsyn Ob,et al.  [Study of synthetic polypeptides. I. Transformations-intramolecular beta-structure coil in poly-S-carbobenzoxymethyl-L-cysteine]. , 1965 .

[13]  S. Ikeda,et al.  The β-structure of poly-S-carbobenzoxymethyl-l-cysteine in solution , 1964 .

[14]  L. I. Katzin The Rotatory Dispersion of Quartz1 , 1964 .

[15]  E. Blout,et al.  AN ANALYSIS OF THE OPTICAL ROTATORY DISPERSION OF POLYPEPTIDES AND PROTEINS. II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[16]  W. Moffitt,et al.  Optical Activity in Absorbing Media , 1959 .

[17]  W. Moffitt,et al.  THE OPTICAL ROTATORY DISPERSION OF SIMPLE POLYPEPTIDES. I. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Doty,et al.  Polypeptides. IV. The Molecular Weight, Configuration and Association of Poly-γ-benzyl-L-glutamate in Various Solvents , 1956 .

[19]  P. Doty,et al.  POLYPEPTIDES. II. THE CONFIGURATION OF POLYMERS OF γ-BENZYL-L-GLUTAMATE IN SOLUTION1 , 1954 .

[20]  H. Günthard,et al.  Optisches Drehungsvermögen organischer Substanzen im infraroten Gebiet. 1. Mitteilung , 1954 .

[21]  H. Eyring,et al.  Theories of Optical Rotatory Power. , 1940 .

[22]  E. Condon,et al.  Theories of Optical Rotatory Power , 1937 .

[23]  C. Snow,et al.  The Optical Rotatory Power of Quartz on Either Side of an Infra-Red Absorption Band , 1930 .