Forces and torques on the nanoscale: from measurement to applications

The possibility of measuring microscopic forces down to the femtonewton range has opened new possibilities in fields such as biophysics and nanophotonics. I will review some of the techniques most often employed, namely the photonic force microscope (PFM) and the total internal reflection microscope (TIRM), which are able to measure tiny forces acting on optically trapped particles. I will then discuss several applications of such nanoscopic forces: from plasmonic optical manipulation, to self-propelled microswimmers, to self-organization in large ensembles of particles.

[1]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[2]  S. Bike,et al.  MEASUREMENTS OF DOUBLE-LAYER REPULSION FOR SLIGHTLY OVERLAPPING COUNTERION CLOUDS , 1990 .

[3]  Giovanni Volpe,et al.  Surface plasmon radiation forces. , 2006, Physical review letters.

[4]  G. Volpe,et al.  Novel perspectives for the application of total internal reflection microscopy. , 2009, Optics express.

[5]  Clemens Bechinger,et al.  Active Brownian motion tunable by light , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Stephen J. Ebbens,et al.  In pursuit of propulsion at the nanoscale , 2010 .

[7]  G. Volpe,et al.  Influence of rotational force fields on the determination of the work done on a driven Brownian particle , 2010, 1006.4534.

[8]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[9]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[10]  Alexander Rohrbach,et al.  Switching and measuring a force of 25 femtoNewtons with an optical trap. , 2005, Optics express.

[11]  S. Dietrich,et al.  Direct measurement of critical Casimir forces , 2008, Nature.

[12]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[13]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[14]  C. Doering,et al.  Resonant activation over a fluctuating barrier. , 1992, Physical review letters.

[15]  P. Leiderer,et al.  Measurement of surface charge densities on Brownian particles using total internal reflection microscopy , 2001 .

[16]  Clemens Bechinger,et al.  Microswimmers in patterned environments , 2011, 1104.3203.

[17]  E. Stelzer,et al.  Three-dimensional position detection of optically trapped dielectric particles , 2002 .

[18]  J. Wehr,et al.  Thermal noise suppression: how much does it cost? , 2007, 0711.0923.

[19]  C. Quate,et al.  Forces in atomic force microscopy in air and water , 1989 .

[20]  Giorgio Volpe,et al.  Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet. , 2011, Optics express.

[21]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[22]  B. Øksendal Stochastic Differential Equations , 1985 .

[23]  P. Leiderer,et al.  Direct measurement of entropic forces induced by rigid rods. , 2003, Physical review letters.

[24]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[25]  Clemens Bechinger,et al.  Evanescent light scattering with magnetic colloids , 2005 .

[26]  Martin Piech,et al.  Prediction and measurement of the interparticle depletion interaction next to a flat wall. , 2002, Journal of colloid and interface science.

[27]  P. Scales,et al.  Solvent Quality Dependent Interactions and Phase Behavior of Polystyrene Particles with Physisorbed PEO−PPO−PEO , 2002 .

[28]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[29]  Michael D. Stone,et al.  Structural transitions and elasticity from torque measurements on DNA , 2003, Nature.

[30]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[31]  Michael A. Bevan,et al.  DIRECT MEASUREMENT OF RETARDED VAN DER WAALS ATTRACTION , 1999 .

[32]  C Bechinger,et al.  Colloids as model systems for problems in statistical physics. , 2005, Chaos.

[33]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[34]  J. Walz Measuring particle interactions with total internal reflection microscopy , 1997 .

[35]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[36]  G. Volpe,et al.  Torque detection using Brownian fluctuations. , 2006, Physical review letters.

[37]  E. Florin,et al.  Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid , 2011 .

[38]  G. Volpe,et al.  Backscattering position detection for photonic force microscopy , 2007 .

[39]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[40]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[41]  Giorgio Volpe,et al.  Quantitative assessment of non-conservative radiation forces in an optical trap , 2009 .

[42]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[43]  T C Lubensky,et al.  State-dependent diffusion: Thermodynamic consistency and its path integral formulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  J. Wehr,et al.  Influence of noise on force measurements. , 2010, Physical review letters.

[45]  E. Purcell Life at Low Reynolds Number , 2008 .

[46]  D. Prieve,et al.  Measurement of Colloidal Forces with TIRM , 1999 .

[47]  J. Wehr,et al.  Force measurement in the presence of Brownian noise: equilibrium-distribution method versus drift method. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Giorgio Volpe,et al.  Brownian motion in a nonhomogeneous force field and photonic force microscope. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  W. Webb,et al.  Scanning-force microscope based on an optical trap. , 1993, Optics letters.

[50]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[51]  P. Denti,et al.  Radiation torque and force on optically trapped linear nanostructures. , 2008, Physical review letters.

[52]  J. Wehr,et al.  Noise-Induced Drift in Stochastic Differential Equations with Arbitrary Friction and Diffusion in the Smoluchowski-Kramers Limit , 2011, 1112.2607.

[53]  William S. Ryu,et al.  Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio , 2000, Nature.

[54]  G. Volpe,et al.  Singular-point characterization in microscopic flows. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[56]  J. Rubí,et al.  Stochastic resonant damping in a noisy monostable system: theory and experiment. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  H. Berg,et al.  Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.