Novel Bismuth Sulfide-Indium (Hydroxy) Sulfide [Bi2s3-In(Oh)Xsy] Nanoarchitecture for Efficient Photoelectrochemical Water Splitting

[1]  M. Cheraghizade,et al.  Visible-range and self-powered bilayer p-Si/n-Bi2S3 heterojunction photodetector: The effect of Au buffer layer on the optoelectronics performance , 2022, Journal of Alloys and Compounds.

[2]  Y. Lai,et al.  Synergistic Defect- and Interfacial-Engineering of Bi2S3-Based Nanoplate Network for High-Performance Photoelectrochemical Solar Water Splitting , 2022, Journal of Materials Chemistry A.

[3]  Sutripto Majumder,et al.  Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting , 2021, Applied Surface Science.

[4]  L. Zan,et al.  Bi2 S3 -In2 S3 Heterostructures for Efficient Photoreduction of Highly Toxic Cr6+ Enabled by Facet-Coupling and Z-Scheme Structure. , 2021, Small.

[5]  K. Sivula Mott–Schottky Analysis of Photoelectrodes: Sanity Checks Are Needed , 2021, ACS Energy Letters.

[6]  Zia-ur-Rehman,et al.  Three dimensional rosette-rod TiO2/Bi2S3 heterojunction for enhanced photoelectrochemical water splitting , 2021, Journal of Alloys and Compounds.

[7]  S. Ramakrishna,et al.  Significance of nanostructure morphologies in photoelectrochemical water splitting cells: A brief review , 2021 .

[8]  C. Subrahmanyam,et al.  Facile Synthesis and Photoelectrochemical Performance of a Bi2S3@rGO Nanocomposite Photoanode for Efficient Water Splitting , 2021 .

[9]  Zhiliang Wang,et al.  Bismuth based photoelectrodes for solar water splitting , 2021 .

[10]  I. R. Hamdani,et al.  Recent progress in material selection and device designs for photoelectrochemical water-splitting , 2020 .

[11]  T. Andreu,et al.  Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells , 2020, Journal of Materials Chemistry A.

[12]  Min Woo Kim,et al.  Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting , 2020 .

[13]  Zhichuan J. Xu,et al.  Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting , 2020 .

[14]  M. Deepa,et al.  Decoration of plasmonic Cu nanoparticles on WO3/Bi2S3 QDs heterojunction for enhanced photoelectrochemical water splitting , 2020 .

[15]  Seo,et al.  Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst , 2019, Catalysts.

[16]  N. Kherani,et al.  X-ray Photospectroscopy and Electronic Studies of Reactor Parameters on Photocatalytic Hydrogenation of Carbon Dioxide by Defect-Laden Indium Oxide Hydroxide Nanorods , 2019, Molecules.

[17]  Z. Fan,et al.  Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. , 2019, Science bulletin.

[18]  M. Mansoor,et al.  Study of solvent effect on structural and photoconductive behavior of ternary chalcogenides InBiS3-In2S3-Bi2S3 composite thin films deposited via AACVD , 2019, Main Group Metal Chemistry.

[19]  Chi-Jung Chang,et al.  Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production , 2019, Catalysts.

[20]  Jun Hu,et al.  Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency , 2019, Coatings.

[21]  Jae Sung Lee,et al.  Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. , 2019, Chemical Society reviews.

[22]  Jaehoon Park,et al.  Raman spectroscopy study of solution-processed In2O3 thin films: effect of annealing temperature on the characteristics of In2O3 semiconductors and thin-film transistors , 2019, Molecular Crystals and Liquid Crystals.

[23]  P. Guo,et al.  In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting. , 2019, Journal of colloid and interface science.

[24]  Dheeraj Kumar,et al.  Plasmonic Ag nanoparticles decorated Bi2S3 nanorods and nanoflowers: Their comparative assessment for photoelectrochemical water splitting , 2019, International Journal of Hydrogen Energy.

[25]  J. Brouwer,et al.  Hydrogen is essential for sustainability , 2018, Current Opinion in Electrochemistry.

[26]  M. Iqbal,et al.  Recent progress in efficiency of hydrogen evolution process based photoelectrochemical cell , 2018, International Journal of Hydrogen Energy.

[27]  Lu-Yin Lin,et al.  Direct Growth of BiVO4/Bi2S3 Nanorod Array on Conductive Glass as Photocatalyst for Enhancing the Photoelectrochemical Performance , 2018, ACS Applied Energy Materials.

[28]  S. C. George,et al.  Nanomaterials for photoelectrochemical water splitting - review , 2018 .

[29]  Brian Ó Gallachóir,et al.  The role of hydrogen in low carbon energy futures–A review of existing perspectives , 2018 .

[30]  Ho Won Jang,et al.  Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting. , 2017, ChemSusChem.

[31]  N. Russo,et al.  Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges , 2017 .

[32]  J. Kennedy,et al.  Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment , 2016 .

[33]  G. Konstantatos,et al.  Size and bandgap tunability in Bi2S3 colloidal nanocrystals and its effect in solution processed solar cells , 2015 .

[34]  Jie Li,et al.  Epitaxial growth of Bi2S3 nanowires on BiVO4 nanostructures for enhancing photoelectrochemical performance , 2015 .

[35]  Ximiao Zhu,et al.  Novel heterostructured Bi2S3/Bi2Sn2O7 with highly visible light photocatalytic activity for the removal of rhodamine B , 2015 .

[36]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[37]  Zhongbiao Wu,et al.  An anion-exchange strategy for 3D hierarchical (BiO)2CO3/amorphous Bi2S3 heterostructures with increased solar absorption and enhanced visible light photocatalysis , 2015 .

[38]  I. Zumeta-Dubé,et al.  First Order Raman Scattering in Bulk Bi2S3 and Quantum Dots: Reconsidering Controversial Interpretations , 2014 .

[39]  A. Bard,et al.  Metal Doping of BiVO4 by Composite Electrodeposition with Improved Photoelectrochemical Water Oxidation , 2013 .

[40]  Ji Hoon Kim,et al.  Incorporation of multiwalled carbon nanotubes into TiO2 nanowires for enhancing photovoltaic performance of dye-sensitized solar cells via highly efficient electron transfer , 2013 .

[41]  Xian‐Wen Wei,et al.  Epitaxial Growth of CdS Nanoparticle on Bi2S3 Nanowire and Photocatalytic Application of the Heterostructure , 2011 .

[42]  R. Frost,et al.  Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide , 2010 .

[43]  Andreas Züttel,et al.  Hydrogen: the future energy carrier , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[45]  Yat Li,et al.  Hydrogen generation from photoelectrochemical water splitting based on nanomaterials , 2009 .

[46]  C. Cao,et al.  Photoresponse and Field-Emission Properties of Bismuth Sulfide Nanoflowers , 2008 .

[47]  Jinlong Yang,et al.  Synthesis, growth mechanism, and work function at highly oriented {001} surfaces of bismuth sulfide microbelts , 2007 .

[48]  Z. Li,et al.  Studies on In(OH)ySz Solid Solutions: Syntheses, Characterizations, Electronic Structure, and Visible-Light-Driven Photocatalytic Activities , 2007 .

[49]  M. Lux‐Steiner,et al.  Photoelectrical properties of In(OH)xSy/PbS(O) structures deposited by SILAR on TiO2 , 2006 .

[50]  Jan Grimm,et al.  An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles , 2006, Nature materials.

[51]  K. Domen,et al.  Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination , 2006 .

[52]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[53]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .