Planning Life Tests Based on Progressively Type-I Grouped Censored Data from the Weibull Distribution

In this article, we apply the simulated annealing algorithm to determine optimally spaced inspection times for the two-parameter Weibull distribution for any given progressive Type-I grouped censoring plan. We examine how the asymptotic relative efficiencies of the estimates are affected by the position of the monitoring points and the number of monitoring points used. A comparison of different inspection plans is made that will enable the user to select a plan for a specified quality goal. Using the same algorithm, we can also determine an optimal progressive Type-I grouped censoring plan when the inspection times and the expected proportions of total failures in the experiment are pre-fixed. Finally, we discuss the sample size and the acceptance constant of the progressively Type-I grouped censored reliability sampling plan when the optimal inspection times are used.

[1]  Veeresh Gadag,et al.  Progressively Censored Reliability Sampling Plans for the Weibull Distribution , 2000, Technometrics.

[2]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[3]  Contributions to the Theory of Estimation from Grouped and Partially Grouped Samples. , 1963 .

[4]  Narayanaswamy Balakrishnan,et al.  Optimal Progressive Censoring Plans for the Weibull Distribution , 2004, Technometrics.

[5]  Rita Aggarwala,et al.  PROGRESSIVE INTERVAL CENSORING: SOME MATHEMATICAL RESULTS WITH APPLICATIONS TO INFERENCE , 2001 .

[6]  N. Balakrishnan,et al.  Optimal step-stress test under progressive type-I censoring , 2004, IEEE Transactions on Reliability.

[7]  E. Cramer Balakrishnan, Narayanaswamy ; Aggarwala, Rita: Progressive censoring : theory, methods, and applications / N. Balakrishnan ; Rita Aggarwala. - Boston ; Basel ; Berlin, 2000 , 2000 .

[8]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[9]  William Q. Meeker,et al.  Planning Life Tests in Which Units Are Inspected for Failure , 1986, IEEE Transactions on Reliability.

[10]  Narayanaswamy Balakrishnan,et al.  Optimal step-stress testing for progressively Type-I censored data from exponential distribution , 2009 .

[11]  B. O'Neill,et al.  Some Recent Results in Lognormal Parameter Estimation Using Grouped and Ungrouped Data , 1972 .

[12]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[13]  Estimating the Mean of an Exponential Distribution from Grouped Observations , 1998 .

[14]  A. V. Dattatreya Rao,et al.  Asymptotically optimal grouping for maximum likelihood estimation of weibull parameters , 1994 .

[15]  K. Rosaiah,et al.  Optimum class limits for ml estimation in two-parameter gamma distribution from a grouped data , 1991 .

[16]  H. Schneider Failure-censored variables-sampling plans for lognormal and Weibull distributions , 1989 .

[17]  Shuo-Jye Wu,et al.  Optimal step-stress test under type I progressive group-censoring with random removals , 2008 .

[18]  Gerald J. Lieberman,et al.  Sampling Plans for Inspection by Variables , 1955 .

[19]  F. Downton,et al.  Statistical analysis of reliability and life-testing models : theory and methods , 1992 .

[20]  Lianfen Qian,et al.  Estimation of weibull parameters for grouped data with competing risks , 2003 .

[21]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[22]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[23]  K. Cheng,et al.  Estimation of the weibull parameters with grouped data , 1988 .

[24]  R. R. L. Kantam,et al.  Optimum group limits for estimation in scaled log-logistic distribution from a grouped data , 2005 .

[25]  Shuo-Jye Wu,et al.  Planning step-stress life test with progressively type I group-censored exponential data , 2006 .

[26]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[27]  Wayne B. Nelson,et al.  Applied Life Data Analysis: Nelson/Applied Life Data Analysis , 2005 .

[28]  A. Mercer,et al.  Contributions to the Theory of Estimation from Grouped and Partially Grouped Samples , 1963 .

[29]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[30]  M. Schader,et al.  Small sample properties of the maximum likelihood estimators of the parameters μ and σ from a grouped sample of a normal population , 1988 .

[31]  Jie Mi,et al.  Statistical estimation for the scale parameter of the gamma distribution based on grouped data , 1998 .