Stability and Transient Performance of Discrete-Time Piecewise Affine Systems

This paper considers asymptotic stability and transient performance of discrete-time piecewise affine systems. We propose a procedure to construct a nested sequence of finite-state symbolic models, each of which abstracts the original piecewise affine system and leads to linear matrix inequalities for guaranteed stability and performance levels. This sequence is in the order of decreasing conservatism, and hence gives us the option to pay more computational cost and analyze a finer symbolic model within the sequence in return for less conservative results. Moreover, in the special case where this sequence is finite, an exact analysis of stability and performance is achieved via semidefinite programming.

[1]  M. Johansson,et al.  Piecewise Linear Control Systems , 2003 .

[2]  Calin Belta,et al.  Hybrid Modeling and Simulation of Biomolecular Networks , 2001, HSCC.

[3]  Ji-Woong Lee Separation in Stability Analysis of Piecewise Linear Systems in Discrete Time , 2008, HSCC.

[4]  Antoine Girard,et al.  Approximation Metrics for Discrete and Continuous Systems , 2006, IEEE Transactions on Automatic Control.

[5]  Sanam Mirzazad-Barijough,et al.  On stability characterization of discrete-time piecewise linear systems , 2010, Proceedings of the 2010 American Control Conference.

[6]  Mahesh Viswanathan,et al.  STORMED Hybrid Systems , 2008, ICALP.

[7]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[8]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[9]  Pierre-Alexandre Bliman,et al.  Stability Analysis of Discrete-Time Switched Systems Through Lyapunov Functions with Nonminimal State , 2003, ADHS.

[10]  Paulo Tabuada,et al.  Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems , 2008, IEEE Transactions on Automatic Control.

[11]  Geir E. Dullerud,et al.  LMI tools for eventually periodic systems , 2002, Syst. Control. Lett..

[12]  Xenofon Koutsoukos,et al.  On hybrid control of complex systems : a survey , 1998 .

[13]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[14]  John N. Tsitsiklis,et al.  Complexity of stability and controllability of elementary hybrid systems , 1999, Autom..

[15]  Maria Domenica Di Benedetto,et al.  Bisimulation theory for switching linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[17]  David P. Stanford,et al.  Stability for a Multi-Rate Sampled-Data System , 1979 .

[18]  Ji-Woong Lee,et al.  On Uniform Stabilization of Discrete-Time Linear Parameter-Varying Control Systems , 2006, IEEE Transactions on Automatic Control.

[19]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[20]  Geir E. Dullerud,et al.  Uniformly Stabilizing Sets of Switching Sequences for Switched Linear Systems , 2007, IEEE Transactions on Automatic Control.

[21]  Ji-Woong Lee,et al.  Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..

[22]  Donald B. Johnson,et al.  Finding All the Elementary Circuits of a Directed Graph , 1975, SIAM J. Comput..

[23]  Pramod P. Khargonekar,et al.  Detectability and Stabilizability of Discrete-Time Switched Linear Systems , 2009, IEEE Transactions on Automatic Control.

[24]  Wei Zhang,et al.  Stability of networked control systems , 2001 .

[25]  T. Andô,et al.  Simultaneous Contractibility , 1998 .

[26]  Sanam Mirzazad-Barijough,et al.  On stability and performance analysis of discrete-time piecewise affine systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[27]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[28]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[29]  Pramod P. Khargonekar,et al.  Optimal Output Regulation for Discrete-Time Switched and Markovian Jump Linear Systems , 2008, SIAM J. Control. Optim..

[30]  D. Stanford,et al.  Some Convergence Properties of Matrix Sets , 1994 .

[31]  M. Morari,et al.  A survey on stability analysis of discrete-time piecewise affine systems , 2005 .

[32]  A. Papachristodoulou,et al.  Analysis of switched and hybrid systems - beyond piecewise quadratic methods , 2003, Proceedings of the 2003 American Control Conference, 2003..

[33]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[34]  Gang Feng,et al.  Stability analysis of piecewise discrete-time linear systems , 2002, IEEE Trans. Autom. Control..

[35]  Mato Baotic,et al.  Stabilizing low complexity feedback control of constrained piecewise affine systems , 2005, Autom..

[36]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[37]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[38]  Geir E. Dullerud,et al.  A new approach for analysis and synthesis of time-varying systems , 1999, IEEE Trans. Autom. Control..

[39]  Arjan van der Schaft,et al.  Modelling, Well-Posedness, Stability of Switched Electrical Networks , 2003, HSCC.

[40]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[41]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[42]  Geir E. Dullerud,et al.  Supervisory Control and Measurement Scheduling for Discrete-Time Linear Systems , 2011, IEEE Transactions on Automatic Control.

[43]  Amir Ali Ahmadi,et al.  Analysis of the joint spectral radius via lyapunov functions on path-complete graphs , 2011, HSCC '11.

[44]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[45]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[46]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[47]  Paulo Tabuada,et al.  Controller synthesis for bisimulation equivalence , 2007, Syst. Control. Lett..

[48]  John N. Tsitsiklis,et al.  Deciding stability and mortality of piecewise affine dynamical systems , 2001, Theor. Comput. Sci..

[49]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[50]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[51]  Ji-Woong Lee,et al.  A computational stability analysis of discrete-time piecewise linear systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[52]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[53]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.