Extraction of reproducible seizure patterns based on EEG scalp correlations

Abstract The objective of this work is to identify similarities in the spatio-temporal dynamics of epileptic seizures, record with scalp EEG. A comprehensive method is proposed and applied in EEG of the patients who suffer from temporal lobe epilepsy. The method is based on the computation of the time-varying degree of non linear correlation between scalp electrodes at seizure onset and during seizure spread, determined by a nonlinear regression analysis. The quantification and coding of these similarity relations allow the comparison between two epileptic networks. Results show that reproducible patterns may be extracted from different seizures of the same patient and confirm the existence of different subtypes of temporal lobe epilepsy.

[1]  Piotr J. Franaszczuk,et al.  An autoregressive method for the measurement of synchronization of interictal and ictal EEG signals , 1999, Biological Cybernetics.

[2]  P. Grassberger,et al.  A robust method for detecting interdependences: application to intracranially recorded EEG , 1999, chao-dyn/9907013.

[3]  Leon D. Iasemidis,et al.  Epileptic seizure prediction and control , 2003, IEEE Transactions on Biomedical Engineering.

[4]  W. van Emde Boas,et al.  Non-linear analysis of intracranial human EEG in temporal lobe epilepsy , 1999, Clinical Neurophysiology.

[5]  F. Wendling,et al.  Extraction of spatio-temporal signatures from depth EEG seizure signals based on objective matching in warped vectorial observations , 1996, IEEE Transactions on Biomedical Engineering.

[6]  Jean Gotman,et al.  Quantitative visualization of ictal subdural EEG changes in children with neocortical focal seizures , 2004, Clinical Neurophysiology.

[7]  Jerome Engel,et al.  Research on the human brain in an epilepsy surgery setting , 1998, Epilepsy Research.

[8]  J. J. Wright,et al.  Autoregression models of EEG , 2004, Biological Cybernetics.

[9]  Janine Reis,et al.  Ictal functional TCD for the lateralization of the seizure onset zone—a report of two cases , 2004, Epilepsy Research.

[10]  Brian Litt,et al.  Special issue on epileptic seizure prediction , 2003, IEEE Trans. Biomed. Eng..

[11]  Kwang-Ki Kim,et al.  The lateralizing and surgical prognostic value of a single 2-hour EEG in mesial TLE , 2000, Seizure.

[12]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[13]  Mario Châvez Analyse de signaux SEEG intercritiques : : apport de modèles dynamiques non linéaires , 2001 .

[14]  Katarzyna J. Blinowska,et al.  A new method of the description of the information flow in the brain structures , 1991, Biological Cybernetics.

[15]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[16]  F. Wendling,et al.  Identification de réseaux épileptogènes par modélisation et analyse non linéaire des signaux SEEG , 2001, Neurophysiologie Clinique/Clinical Neurophysiology.

[17]  J. Bellanger,et al.  Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG , 2001, Clinical Neurophysiology.

[18]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[19]  Matthieu Caparos,et al.  Analyse automatique des crises d'épilepsie du lobe temporal à partir des EEG de surface , 2006 .

[20]  J. Ebersole,et al.  Localization of Temporal Lobe Foci by Ictal EEG Patterns , 1996, Epilepsia.

[21]  L D Iasemidis,et al.  Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. , 1997, Electroencephalography and clinical neurophysiology.

[22]  Michel Le Van Quyen,et al.  Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings , 2003, IEEE Transactions on Biomedical Engineering.

[23]  P H Crandall,et al.  Ictal localization of temporal lobe seizures with scalp/sphenoidal recordings , 1989, Neurology.

[24]  J Gotman,et al.  Segmentation and classification of EEG during epileptic seizures. , 1998, Electroencephalography and clinical neurophysiology.

[25]  K Lehnertz,et al.  Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy--an overview. , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[26]  Piotr J. Franaszczuk,et al.  Application of the Directed Transfer Function Method to Mesial and Lateral Onset Temporal Lobe Seizures , 2004, Brain Topography.

[27]  James Durbin,et al.  The fitting of time series models , 1960 .

[28]  F. H. Lopes da Silva,et al.  Interdependence of EEG signals: Linear vs. nonlinear Associations and the significance of time delays and phase shifts , 2005, Brain Topography.

[29]  P J Franaszczuk,et al.  Analysis of mesial temporal seizure onset and propagation using the directed transfer function method. , 1994, Electroencephalography and clinical neurophysiology.

[30]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[31]  F. Wendling,et al.  Automatic lateralization of temporal lobe epilepsy based on scalp EEG , 2006, Clinical Neurophysiology.

[32]  F. Mormann,et al.  Epileptic seizures are preceded by a decrease in synchronization , 2003, Epilepsy Research.

[33]  Inan Güler,et al.  AR spectral analysis of EEG signals by using maximum likelihood estimation , 2001, Comput. Biol. Medicine.

[34]  H. Akaike Fitting autoregressive models for prediction , 1969 .