Nanocrystal imaging using intense and ultrashort X-ray pulses

Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecul ...

[1]  J. Arthur,et al.  Progress report on the LCLS XFEL at SLAC , 2007 .

[2]  Libor Juha,et al.  Subnanometer-scale measurements of the interaction of ultrafast soft x-ray free-electron-laser pulses with matter. , 2006, Physical review letters.

[3]  M. Klintenberg,et al.  Radiation damage in biological material: Electronic properties and electron impact ionization in urea , 2008, 0808.1197.

[4]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[5]  H. Chapman,et al.  X-ray imaging beyond the limits. , 2009, Nature materials.

[6]  J. Hajdu Single-molecule X-ray diffraction. , 2000, Current opinion in structural biology.

[7]  Mark A Hill,et al.  Will reduced radiation damage occur with very small crystals? , 2005, Journal of synchrotron radiation.

[8]  D. T. Cromer,et al.  X-ray scattering factors computed from numerical Hartree–Fock wave functions , 1968 .

[9]  A. Wilson,et al.  The probability distribution of X-ray intensities , 1949 .

[10]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[11]  Abraham Szoke,et al.  Dynamics of biological molecules irradiated by short x-ray pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Chao Zhang,et al.  A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region , 2008 .

[13]  Gyula Faigel,et al.  Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses , 2004 .

[14]  S. Boutet,et al.  Coherent X-ray diffractive imaging of protein crystals. , 2008, Journal of synchrotron radiation.

[15]  Richard A. London,et al.  Unified model of secondary electron cascades in diamond , 2004 .

[16]  A. Ourmazd,et al.  Structure from Fleeting Illumination of Faint Spinning Objects in Flight with Application to Single Molecules , 2008, 0806.2341.

[17]  David van der Spoel,et al.  Potential impact of an X-ray free electron laser on structural biology , 2004 .

[18]  R. London,et al.  Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. , 2007, Optics express.

[19]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[20]  A. Pryor,et al.  Collection and interpretation of neutron diffraction measurements on urea , 1970 .

[21]  J. H. Hubbell,et al.  XCOM : Photon Cross Sections Database , 2005 .

[22]  Lars Liljas,et al.  The three-dimensional structure of the bacterial virus MS2 , 1990, Nature.

[23]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[24]  Richard A. London,et al.  Femtosecond time-delay X-ray holography , 2007, Nature.

[25]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[26]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[27]  J. Miao,et al.  High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution , 2008, Proceedings of the National Academy of Sciences.

[28]  Magnus Bergh,et al.  Model for the dynamics of a water cluster in an x-ray free electron laser beam. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Carl Caleman,et al.  Auger electron cascades in water and ice , 2004 .

[30]  Stefan P Hau-Riege Effect of the coherence properties of self-amplified-spontaneous-emission x-ray free electron lasers on single-particle diffractive imaging. , 2008, Optics express.

[31]  Richard A. London,et al.  Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength , 2007 .

[32]  R Giegé,et al.  Structure of tetragonal hen egg-white lysozyme at 0.94 A from crystals grown by the counter-diffusion method. , 2001, Acta crystallographica. Section D, Biological crystallography.

[33]  J. Miao,et al.  An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Caleman,et al.  Secondary Electron Cascade Dynamics in KI and CsI , 2007 .

[35]  Janos Hajdu,et al.  Radiation-induced electron cascade in diamond and amorphous carbon , 2001, SPIE Optics + Photonics.

[36]  U Weierstall,et al.  Powder diffraction from a continuous microjet of submicrometer protein crystals. , 2008, Journal of synchrotron radiation.

[37]  R. London,et al.  Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in x-ray diffraction imaging of single biological molecules. , 2007, Physical review letters.

[38]  Reginald W. James,et al.  The Optical principles of the diffraction of X-rays , 1948 .

[39]  H. N. Chapman,et al.  Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.

[40]  F. Maia,et al.  Structural studies of melting on the picosecond time scale. , 2008, Physical chemistry chemical physics : PCCP.

[41]  M. Ferrario,et al.  Design considerations for table-top, laser-based VUV and X-ray free electron lasers , 2007 .

[42]  J. Hajdu,et al.  Diffraction imaging of single particles and biomolecules. , 2003, Journal of structural biology.