暂无分享,去创建一个
[1] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[2] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[3] Jack J. Dongarra,et al. Improving Performance of GMRES by Reducing Communication and Pipelining Global Collectives , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
[4] E. F. DAzevedo,et al. Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors , 1992 .
[5] Jeffrey Cornelis,et al. Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method , 2019, IEEE Transactions on Parallel and Distributed Systems.
[6] Emmanuel Agullo,et al. Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..
[7] Gérard Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48 , 1987, Parallel Comput..
[8] William Gropp,et al. Scalable Non-blocking Preconditioned Conjugate Gradient Methods , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[9] Wim Vanroose,et al. Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..
[10] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[11] Anthony T. Chronopoulos,et al. Block s‐step Krylov iterative methods , 2010, Numer. Linear Algebra Appl..
[12] J. Dongarra,et al. HPCG Benchmark: a New Metric for Ranking High Performance Computing Systems∗ , 2015 .
[13] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[14] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[15] Hong Zhang,et al. Hierarchical Krylov and nested Krylov methods for extreme-scale computing , 2014, Parallel Comput..
[16] John Shalf,et al. The new landscape of parallel computer architecture , 2007 .
[17] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[18] James Demmel,et al. Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods , 2013, SIAM J. Sci. Comput..
[19] Siegfried Cools,et al. Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method , 2018, Parallel Comput..
[20] John Shalf,et al. The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..
[21] Sascha M. Schnepp,et al. Pipelined, Flexible Krylov Subspace Methods , 2015, SIAM J. Sci. Comput..
[22] James Demmel,et al. A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..
[23] Jeffrey Cornelis,et al. The Communication-Hiding Conjugate Gradient Method with Deep Pipelines , 2018, ArXiv.
[24] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[25] Jocelyne Erhel,et al. Varying the s in Your s-step GMRES , 2018 .
[26] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[27] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[28] Wim Vanroose,et al. The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems , 2016, Parallel Comput..
[29] Marc Casas,et al. Iteration-fusing conjugate gradient , 2017, ICS.
[30] Miroslav Tuma,et al. The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology , 2018, SIAM J. Sci. Comput..
[31] Wim Vanroose,et al. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm , 2014, Parallel Comput..
[32] Zdenek Strakos. Effectivity and optimizing of algorithms and programs on the host-computer/array-processor system , 1987, Parallel Comput..