Lattice based extended formulations for integer linear equality systems

We study different extended formulations for the set $${X = \{{\boldsymbol x}\in \mathbb{Z}^n \mid {\boldsymbol A}{\boldsymbol x} = {\boldsymbol A}{\boldsymbol x}^0\}}$$ with $${{\boldsymbol A} \in \mathbb{Z}^{m \times n}}$$ in order to tackle the feasibility problem for the set $${X \cap \mathbb{Z}^n_+.}$$ Pursuing the work of Aardal, Lenstra et al. using the reformulation $${X=\{{\boldsymbol x} \in \mathbb{Z}^n \mid {\boldsymbol x}-{\boldsymbol x}^0={\boldsymbol Q}{\boldsymbol \lambda},\,{\boldsymbol \lambda} \in \mathbb{Z}^{n-m}\}}$$ , our aim is to derive reformulations of the form $${\{{\boldsymbol x} \in \mathbb{Z}^n \mid {\boldsymbol P}({\boldsymbol x}-{\boldsymbol x}^0)={\boldsymbol T} {\boldsymbol \mu}, {\boldsymbol \mu} \in \mathbb{Z}^s\}}$$ with 0  ≤  s ≤ n − m where preferably all the coefficients of P are small compared to the coefficients of A and T. In such cases the new variables μ appear to be good branching directions, and in certain circumstances permit one to deduce rapidly that the instance is infeasible. We give a polynomial time algorithm for identifying such P, T if possible, and for the case that A has one row a we analyze the reformulation when s = 1, that is, one μ-variable is introduced. In particular, we determine the integer width of the extended formulations in the direction of the μ-variable, and derive a lower bound on the Frobenius number of a. We conclude with some preliminary tests to see if the reformulations are effective when the number s of additional constraints and variables is limited.

[1]  M. Padberg Equivalent knapsack‐type formulations of bounded integer linear programs: An alternative approach , 1972 .

[2]  R. Kannan ALGORITHMIC GEOMETRY OF NUMBERS , 1987 .

[3]  Arjen K. Lenstra,et al.  Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..

[4]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[5]  Arjen K. Lenstra,et al.  Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 1999, INFORMS J. Comput..

[6]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[7]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[8]  Laurence A. Wolsey,et al.  Coefficient reduction for inequalities in 0–1 variables , 1974, Math. Program..

[9]  G. H. Bradley Equivalent Integer Programs and Canonical Problems , 1971 .

[10]  Milind Dawande,et al.  A Class of Hard Small 0-1 Programs , 1998, INFORMS J. Comput..

[11]  Gordon H. Bradley,et al.  Transformation of integer programs to knapsack problems , 1971, Discret. Math..

[12]  Laurence A. Wolsey,et al.  Combining Problem Structure with Basis Reduction to Solve a Class of Hard Integer Programs , 2002, Math. Oper. Res..

[13]  K. Aardal Solving a System of Diophantine Equations with Lower and Upper Bounds on the Variables , 1998 .

[14]  Laurence A. Wolsey,et al.  Decomposition of Integer Programs and of Generating Sets , 1997, ESA.

[15]  Arjen K. Lenstra,et al.  Hard Equality Constrained Integer Knapsacks , 2002, Math. Oper. Res..

[16]  Linus Schrage,et al.  Subset Coefficient Reduction Cuts for 0/1 Mixed-Integer Programming , 1985, Oper. Res..

[17]  Gérard Cornuéjols,et al.  Branching on general disjunctions , 2011, Math. Program..

[18]  H. Lenstra,et al.  Flags and Lattice Basis Reduction , 2001 .

[19]  Arjen K. Lenstra,et al.  Solving a Linear Diophantine Equation with Lower and Upper Bounds on the Variables , 1998, IPCO.

[20]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[21]  Kent Andersen,et al.  Coefficient strengthening: a tool for reformulating mixed-integer programs , 2007, Math. Program..

[22]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..