Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter.

[1]  P. Tian,et al.  Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain , 2011, Proceedings of the National Academy of Sciences.

[2]  H. Bernstein,et al.  Residues in a Conserved α-Helical Segment Are Required for Cleavage but Not Secretion of an Escherichia coli Serine Protease Autotransporter Passenger Domain , 2011, Journal of bacteriology.

[3]  N. Isaacs,et al.  Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore. , 2011, The Biochemical journal.

[4]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[5]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[6]  Jan H. Jensen,et al.  Graphical analysis of pH-dependent properties of proteins predicted using PROPKA , 2011, BMC Structural Biology.

[7]  F. Kawai,et al.  A novel intein-like autoproteolytic mechanism in autotransporter proteins. , 2010, Journal of molecular biology.

[8]  P. Tian,et al.  Molecular basis for the structural stability of an enclosed β-barrel loop. , 2010, Journal of molecular biology.

[9]  J. Tommassen,et al.  Assembly of outer-membrane proteins in bacteria and mitochondria. , 2010, Microbiology.

[10]  C. Stathopoulos,et al.  Importance of Conserved Residues of the Serine Protease Autotransporter β-Domain in Passenger Domain Processing and β-Barrel Assembly , 2010, Infection and Immunity.

[11]  N. Dautin Serine Protease Autotransporters of Enterobacteriaceae (SPATEs): Biogenesis and Function , 2010, Toxins.

[12]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[13]  B. Berg,et al.  Crystal structure of a full-length autotransporter. , 2010, Journal of molecular biology.

[14]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[15]  E. Tajkhorshid,et al.  Coupling of calcium and substrate binding through loop alignment in the outer-membrane transporter BtuB. , 2009, Journal of molecular biology.

[16]  H. Bernstein,et al.  Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane , 2009, Proceedings of the National Academy of Sciences.

[17]  Adrian J Mulholland,et al.  Modeling protein splicing: reaction pathway for C-terminal splice and intein scission. , 2009, The journal of physical chemistry. B.

[18]  P. Clark,et al.  Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion , 2009, Molecular microbiology.

[19]  S. Buchanan,et al.  Autotransporter structure reveals intra-barrel cleavage followed by conformational changes , 2007, Nature Structural &Molecular Biology.

[20]  H. Bernstein,et al.  Protein secretion in gram-negative bacteria via the autotransporter pathway. , 2007, Annual review of microbiology.

[21]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[22]  D. E. Anderson,et al.  Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism , 2007, The EMBO journal.

[23]  Gabriel Waksman,et al.  Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter , 2006, The EMBO journal.

[24]  S. Khalid,et al.  Molecular dynamics simulations of a bacterial autotransporter: NalP from Neisseria meningitidis , 2006, Molecular membrane biology.

[25]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[26]  R. Ghirlando,et al.  Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter , 2005, Molecular microbiology.

[27]  H. Bernstein,et al.  An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Velarde,et al.  Hydrophobic Residues of the Autotransporter EspP Linker Domain Are Important for Outer Membrane Translocation of Its Passenger* , 2004, Journal of Biological Chemistry.

[29]  Piet Gros,et al.  Structure of the translocator domain of a bacterial autotransporter , 2004, The EMBO journal.

[30]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[31]  Yufeng Zhai,et al.  Protein-translocating outer membrane porins of Gram-negative bacteria. , 2002, Biochimica et biophysica acta.

[32]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Kolter,et al.  The outer membrane protein, Antigen 43, mediates cell‐to‐cell interactions within Escherichia coli biofilms , 2000, Molecular microbiology.

[34]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[35]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[36]  C. Kocks,et al.  The unrelated surface proteins ActA of Listeria monocytogenes and lcsA of Shigella flexneri are sufficient to confer actin‐based motility on Listeria innocua and Escherichia coli respectively , 1995, Molecular microbiology.

[37]  J. Theriot,et al.  Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Rappuoli,et al.  Unravelling the pathogenic role of Helicobacter pylori in peptic ulcer: potential new therapies and vaccines. , 1994, Trends in biotechnology.

[39]  K. Ito,et al.  SecY protein, a membrane-embedded secretion factor of E. coli, is cleaved by the ompT protease in vitro. , 1990, Biochemical and biophysical research communications.

[40]  E. Amann,et al.  Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. , 1988, Gene.

[41]  S. Clarke,et al.  Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. , 1987, The Journal of biological chemistry.

[42]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[43]  J. Dunitz,et al.  Stereochemistry of reaction paths at carbonyl centres , 1974 .