Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3

The physical properties and photoelectrochemical characterization of the spinel ZnFe2O4, elaborated by chemical route, have been investigated for the hydrogen production under visible light. The forbidden band is found to be 1.92Â eV and the transition is indirectly allowed. The electrical conduction occurs by small polaron hopping with activation energy of 0.20Â eV. p-type conductivity is evidenced from positive thermopower and cathodic photocurrent. The flat band potential (0.18Â VSCE) determined from the capacitance measurements is suitably positioned with respect to H2O/H2 level (-0.85Â VSCE). Hence, ZnFe2O4 is found to be an efficient photocatalyst for hydrogen generation under visible light. The photoactivity increases significantly when the spinel is combined with a wide band gap semiconductor. The best performance with a hydrogen rate evolution of 9.2Â cm3Â h-1 (mg catalyst)-1 occurs over the new hetero-system ZnFe2O4/SrTiO3 in Na2S2O3 (0.025Â M) solution.

[1]  M. Valenzuela,et al.  Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4 , 2002 .

[2]  Mohamed Trari,et al.  Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system , 2011 .

[3]  K. Gurunathan,et al.  Visible light active pristine and Fe3+ doped CuGa2O4 spinel photocatalysts for solar hydrogen production , 2008 .

[4]  S. Nakata,et al.  Oxygen storage capacity of CuMO2 (M = Al, Fe, Mn, Ga) with a delafossite-type structure , 2009 .

[5]  J. Han,et al.  Nonlinear optical properties in SrTiO3 thin films by pulsed laser deposition , 2005 .

[6]  A. Demourgues,et al.  Correlation between structural features and vis-NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A = Mg, Zn) , 2008 .

[7]  G. Campet,et al.  n-Type SrTiO3 thin films: Electronic processes and photoelectrochemical behavior , 1987 .

[8]  B. C. Tofield,et al.  Materials for energy conservation and storage , 1981 .

[9]  M. Trari,et al.  Photoelectrochemical H2-generation over Spinel FeCr2O4 in X2- solutions (X2-Â =Â S2- and ) , 2009 .

[10]  Gongxuan Lu,et al.  Hydrogen production by H2S photodecomposition on ZnFe2O4 catalyst , 1992 .

[11]  M. Trari,et al.  Photocatalytic reduction of cadmium over CuFeO2 synthesized by sol–gel , 2009 .

[12]  Peixin Zhang,et al.  XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method , 2008 .

[13]  Xiao Feng,et al.  Industrial emergy evaluation for hydrogen production systems from biomass and natural gas , 2009 .

[14]  James R. Bolton,et al.  Solar photoproduction of hydrogen: A review , 1996 .

[15]  M. Trari,et al.  Hydrogen photo-evolution over the spinel CuCr2O4 , 2009 .

[16]  Z. Cvejic,et al.  Dielectric properties and conductivity of zinc ferrite and zinc ferrite doped with yttrium , 2009 .

[17]  Jianmeng Chen,et al.  Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst. , 2008, Journal of hazardous materials.

[18]  M. E. Zayat,et al.  Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes , 1998 .

[19]  M. Trari,et al.  CuAlO2/TiO2 heterojunction applied to visible light H2 production , 2007 .

[20]  F. Wang,et al.  Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method , 2009 .

[21]  Edward J. Anthony,et al.  Clean combustion of solid fuels , 2008 .

[22]  M. Trari,et al.  Characterization of new heterosystem CuFeO2/SnO2 application to visible-light induced hydrogen evolution , 2008 .

[23]  Hongguang Jin,et al.  Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy , 2009 .

[24]  R. C. Weast Handbook of chemistry and physics , 1973 .