Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia

Summary The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.

[1]  G. Wang,et al.  Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. , 2005, Blood.

[2]  A. Wan,et al.  The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. , 2006, Blood.

[3]  E. Kjeldsen,et al.  The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML , 2009, European journal of haematology.

[4]  Wolfram Goessling,et al.  The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML , 2010, Science.

[5]  M. Heuser,et al.  Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Ccl3. , 2008, Experimental hematology.

[6]  R. Humphries,et al.  Hox genes in hematopoiesis and leukemogenesis , 2007, Oncogene.

[7]  K. Takeshita,et al.  MEIS1 and HOXA7 genes in human acute myeloid leukemia. , 2000, Leukemia research.

[8]  M. Miller,et al.  Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion , 2016, PloS one.

[9]  K. Ross,et al.  SYK Regulates mTOR Signaling in AML , 2013, Leukemia.

[10]  F. Rosenbauer,et al.  Macrophage development from HSCs requires PU.1-coordinated microRNA expression. , 2011, Blood.

[11]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[12]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[13]  M. Cleary,et al.  Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. , 2007, Genes & development.

[14]  L. Kömüves,et al.  Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias , 1999, Leukemia.

[15]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[16]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[17]  M. Słabicki,et al.  Elucidation of tonic and activated B-cell receptor signaling in Burkitt’s lymphoma provides insights into regulation of cell survival , 2016, Proceedings of the National Academy of Sciences.

[18]  G. Sauvageau,et al.  Near-maximal expansions of hematopoietic stem cells in culture using NUP98-HOX fusions. , 2007, Experimental hematology.

[19]  L. Lanier,et al.  Role of ITAM‐containing adapter proteins and their receptors in the immune system and bone , 2005, Immunological reviews.

[20]  G. Wang,et al.  Persistent Transactivation by Meis1 Replaces Hox Function in Myeloid Leukemogenesis Models: Evidence for Co-Occupancy of Meis1-Pbx and Hox-Pbx Complexes on Promoters of Leukemia-Associated Genes , 2006, Molecular and Cellular Biology.

[21]  A. Baron,et al.  Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia , 2002, Leukemia.

[22]  Christof Fellmann,et al.  An optimized microRNA backbone for effective single-copy RNAi. , 2013, Cell reports.

[23]  H. Urlaub,et al.  β2 integrin-derived signals induce cell survival and proliferation of AML blasts by activating a Syk/STAT signaling axis. , 2013, Blood.

[24]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[25]  P. Linsley,et al.  miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice , 2011, The Journal of experimental medicine.

[26]  H. Urlaub,et al.  FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. , 2015, Blood.

[27]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. , 1995, Genes & development.

[28]  U. Thorsteinsdóttir,et al.  marrow cells induces stem cell expansion gene in bone Hoxa 9 associated − Overexpression of the myeloid leukemia , 2001 .

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  G. Boucher,et al.  RNA-seq analysis of 2 closely related leukemia clones that differ in their self-renewal capacity. , 2011, Blood.

[31]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[32]  J. Aster,et al.  SYK is a critical regulator of FLT3 in acute myeloid leukemia. , 2014, Cancer cell.

[33]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[34]  J. Hess,et al.  The pathogenesis of mixed-lineage leukemia. , 2012, Annual review of pathology.

[35]  Michael Reth,et al.  Autoinhibition and adapter function of Syk , 2009, Immunological reviews.

[36]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[37]  Piotr J. Balwierz,et al.  ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs , 2014, Genome research.

[38]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[39]  S. Wingert,et al.  STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling , 2015, Nature Communications.

[40]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[41]  A. Verma,et al.  Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia , 2015, Nature Medicine.

[42]  A. Plückthun,et al.  Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment , 2016, PLoS pathogens.

[43]  K. Stegmaier,et al.  Increased SYK activity is associated with unfavorable outcome among patients with acute myeloid leukemia , 2015, Oncotarget.

[44]  C. Bloomfield,et al.  Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[46]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[47]  M. Heuser,et al.  Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. , 2010, Blood.

[48]  Tina N. Davis,et al.  Proteomic and genetic approaches identify Syk as an AML target. , 2009, Cancer cell.

[49]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[50]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[51]  Philipp S. Hoppe,et al.  Hematopoietic Cytokines Can Instruct Lineage Choice , 2009, Science.

[52]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[53]  J. Kutok,et al.  Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1 , 2004, Nature Genetics.

[54]  Ryan D. Morin,et al.  Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype , 2010, Nature Medicine.

[55]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[56]  Malachi Griffith,et al.  In-depth characterization of the microRNA transcriptome in a leukemia progression model. , 2008, Genome research.

[57]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[58]  G. Nolan,et al.  Decoupling of tumor-initiating activity from stable immunophenotype in HoxA9-Meis1-driven AML. , 2012, Cell stem cell.

[59]  Scott A. Armstrong,et al.  MLL translocations, histone modifications and leukaemia stem-cell development , 2007, Nature Reviews Cancer.

[60]  Ryan D. Morin,et al.  Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. , 2011, Blood.

[61]  G. Boucher,et al.  The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias , 2015, Nature Genetics.

[62]  M. Heuser,et al.  Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. , 2009, Blood.

[63]  G. Sauvageau,et al.  Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. Buske,et al.  Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. , 2003, Blood.

[65]  J. Rush,et al.  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells , 2005, Nature Biotechnology.

[66]  M. Nóbrega,et al.  PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway , 2014, Leukemia.

[67]  R. Humphries,et al.  Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells , 1999, Leukemia.

[68]  Unnur Thorsteinsdottir,et al.  Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b , 1998, The EMBO journal.

[69]  C. Lavau,et al.  Flt3 is dispensable to the Hoxa9/Meis1 leukemogenic cooperation. , 2007, Blood.

[70]  A. Schambach,et al.  MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. , 2007, Blood.

[71]  K. Akashi,et al.  Essential role of PU.1 in maintenance of mixed lineage leukemia-associated leukemic stem cells , 2015, Cancer science.

[72]  A. Hero,et al.  Identification and characterization of Hoxa9 binding sites in hematopoietic cells. , 2012, Blood.

[73]  Nicola K. Wilson,et al.  Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. , 2011, Cancer cell.

[74]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[75]  R. Humphries,et al.  Differential and Common Leukemogenic Potentials of Multiple NUP98-Hox Fusion Proteins Alone or with Meis1 , 2004, Molecular and Cellular Biology.

[76]  R. Humphries,et al.  Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. , 2002, Experimental hematology.

[77]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[78]  F. Rosenbauer,et al.  Effect of transcription-factor concentrations on leukemic stem cells. , 2005, Blood.

[79]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[80]  Fatima Al-Shahrour,et al.  In Vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. , 2013, Cancer cell.

[81]  M. Mann,et al.  Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway*S , 2005, Molecular & Cellular Proteomics.

[82]  R. Humphries,et al.  Transplantable cell lines generated with NUP98–Hox fusion genes undergo leukemic progression by Meis1 independent of its binding to DNA , 2005, Leukemia.