68Ga-PSMA PET/CT Detects the Location and Extent of Primary Prostate Cancer

We evaluated the accuracy of PET/CT with 68Ga-PSMA-HBED-CC—a 68Ga-conjugated ligand of human prostate-specific membrane antigen (PSMA)—to localize cancer in the prostate and surrounding tissue at initial diagnosis. Methods: Twenty-one patients with biopsy-proven prostate cancer underwent 68Ga-PSMA-HBED-CC (68Ga-PSMA) PET/CT at a median of 4 d (range, 0–47 d) before radical prostatectomy. Based on a 6-segment model, the Gleason score and proportion of tumor tissue within each segment (segmental tumor burden, or STB) as determined by histopathology (STBHP) were correlated with SUVmax and STB as determined by different SUV cutoffs for 68Ga-PSMA PET (STBPET1–6). Furthermore, the involvement of seminal vesicles and other extracapsular extension were assessed by histopathology and PET/CT. Results: Histopathology-positive segments (n = 100 of 126; 79%) demonstrated a significantly higher mean ± SD SUVmax (11.8 ± 7.6) than histopathology-negative segments (4.9 ± 2.9; P < 0.001). Receiver-operating-characteristic analysis revealed an optimal SUVmax cutoff of 6.5 for discrimination of histopathology-positive segments from histopathology-negative segments (area under the curve, 0.84; P < 0.001), which gave 67% sensitivity, 92% specificity, a 97% positive predictive value, a 42% negative predictive value, and 72% accuracy. STBPET3 as determined by (2 × blood SUV) + (2 × SD) correlated best with STBHP (Pearson ρ = 0.68; P < 0.001; mean difference ± SD, 19% ± 15%). PET/CT correctly detected invasion of seminal vesicles (n = 11 of 21 patients; 52%) with 86% accuracy and tumor spread through the capsule (n = 12; 57%) with 71% accuracy. Conclusion: 68Ga-PSMA PET/CT accurately detected the location and extent of primary prostate cancer. Our preliminary findings warrant further investigation of 68Ga-PSMA PET/CT in conjunction with needle biopsy.

[1]  Michael Lassmann,et al.  68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies , 2015, The Journal of Nuclear Medicine.

[2]  Toby C. Cornish,et al.  18F-DCFBC PET/CT for PSMA-Based Detection and Characterization of Primary Prostate Cancer , 2015, The Journal of Nuclear Medicine.

[3]  Baris Turkbey,et al.  Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. , 2015, Radiology.

[4]  Nassir Navab,et al.  Multimodal image-guided prostate fusion biopsy based on automatic deformable registration , 2015, International Journal of Computer Assisted Radiology and Surgery.

[5]  G. Kristiansen,et al.  Comprehensive validation of published immunohistochemical prognostic biomarkers of prostate cancer—what has gone wrong? A blueprint for the way forward in biomarker studies , 2014, British Journal of Cancer.

[6]  T. Holland-Letz,et al.  The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[7]  M. Hacker,et al.  Combined PET/MRI Improves Diagnostic Accuracy in Patients with Prostate Cancer: A Prospective Diagnostic Trial , 2014, Clinical Cancer Research.

[8]  Shyam Natarajan,et al.  Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. , 2014, European urology.

[9]  T. Holland-Letz,et al.  Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer , 2013, European Journal of Nuclear Medicine and Molecular Imaging.

[10]  C Fraser,et al.  The diagnostic accuracy and cost-effectiveness of magnetic resonance spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate abnormalities for biopsy: a systematic review and economic evaluation. , 2013, Health technology assessment.

[11]  Jiani Hu,et al.  The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. , 2012, AJR. American journal of roentgenology.

[12]  A. Ben Jemaa,et al.  Co-expression and impact of prostate specific membrane antigen and prostate specific antigen in prostatic pathologies , 2010, Journal of experimental & clinical cancer research : CR.

[13]  Slave Trajanoski,et al.  Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Carcinoma with Distant Metastasis , 2009, Pathology & Oncology Research.

[14]  R. Wahl,et al.  From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors , 2009, Journal of Nuclear Medicine.

[15]  L. Egevad,et al.  The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma , 2005, The American journal of surgical pathology.

[16]  U. Ferreira,et al.  Prostate cancer with bladder neck involvement: Pathologic findings with application of a new practical method for tumor extent evaluation and recurrence-free survival after radical prostatectomy , 2004, International Urology and Nephrology.