multimode: An R Package for Mode Assessment

In several applied fields, multimodality assessment is a crucial task as a previous exploratory tool or for determining the suitability of certain distributions. The goal of this paper is to present the utilities of the R package multimode, which collects different exploratory and testing nonparametric approaches for determining the number of modes and their estimated location. Specifically, some graphical tools, allowing for the identification of mode patterns, based on the kernel density estimation are provided (SiZer map, mode tree or mode forest). Several formal testing procedures for determining the number of modes are described in this paper and implemented in the multimode package, including methods based on the ideas of the critical bandwidth, the excess mass or using a combination of both. This package also includes a function for estimating the modes locations and different classical data examples that have been considered in mode testing literature.

[1]  L. Duembgen,et al.  Multiscale inference about a density , 2007, 0706.3968.

[2]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[3]  S. Crawford An Application of the Laplace Method to Finite Mixture Distributions , 1994 .

[4]  Y. Bechtel,et al.  A population and family study N‐acetyltransferase using caffeine urinary metabolites , 1993, Clinical pharmacology and therapeutics.

[5]  Guenther Walther,et al.  The Block Criterion for Multiscale Inference About a Density, With Applications to Other Multiscale Problems , 2010 .

[6]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[7]  Alberto Rodríguez-Casal,et al.  NPCirc: An R Package for Nonparametric Circular Methods , 2014 .

[8]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[9]  G. Sawitzki,et al.  Excess Mass Estimates and Tests for Multimodality , 1991 .

[10]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[11]  D. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[12]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[13]  James Stephen Marron,et al.  Mode testing via the excess mass estimate , 2001 .

[14]  Ming-Yen Cheng,et al.  Calibrating the excess mass and dip tests of modality , 1998 .

[15]  Charles Auffray,et al.  DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. , 2016, American journal of human genetics.

[16]  David J. Marchette,et al.  The Bumpy Road to the Mode Forest , 1998 .

[17]  A. Izenman,et al.  Philatelic Mixtures and Multimodal Densities , 1988 .

[18]  Rick Dale,et al.  Assessing bimodality to detect the presence of a dual cognitive process , 2013, Behavior research methods.

[19]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[20]  S. Weisberg Applied Linear Regression , 1981 .

[21]  B. Silverman,et al.  Using Kernel Density Estimates to Investigate Multimodality , 1981 .

[22]  Sarah Kuester,et al.  Smoothing Techniques With Implementation In S , 2016 .

[23]  Alberto Rodríguez-Casal,et al.  CircSiZer: an exploratory tool for circular data , 2012, Environmental and Ecological Statistics.

[24]  Inge Koch,et al.  Feature significance for multivariate kernel density estimation , 2008, Comput. Stat. Data Anal..

[25]  Probal Chaudhuri,et al.  Significance in Scale Space for Bivariate Density Estimation , 2002 .

[26]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[27]  M. York,et al.  ON THE CALIBRATION OF SILVERMAN'S TEST FOR MULTIMODALITY , 2001 .

[28]  M. Postman,et al.  Probes of large-scale structure in the Corona Borealis region. , 1986 .

[29]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[30]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[31]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[32]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[33]  T. Mazeh,et al.  ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE , 2014, 1402.5694.

[34]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .

[35]  D. W. Scott,et al.  The Mode Tree: A Tool for Visualization of Nonparametric Density Features , 1993 .

[36]  Alberto Rodríguez-Casal,et al.  Mode testing, critical bandwidth and excess mass , 2016, TEST.

[37]  I. Good,et al.  Density Estimation and Bump-Hunting by the Penalized Likelihood Method Exemplified by Scattering and Meteorite Data , 1980 .

[38]  M. Colombo,et al.  Internal Social Capital and the Attraction of Early Contributions in Crowdfunding , 2015 .

[39]  I. Salgado-Ugarte,et al.  Nonparametric assessment of multimodality for univariate data , 1998 .