Vascular endothelial growth factor-C accelerates diabetic wound healing.

Diabetes impairs numerous aspects of tissue repair. Failure of wound angiogenesis is known to delay diabetic wound healing, whereas the importance of lymphangiogenesis for wound healing is unclear. We have examined whether overexpression of vascular endothelial growth factor (VEGF)-C via an adenoviral vector could improve the healing of full-thickness punch biopsy wounds in genetically diabetic (db/db) mice. We found that VEGF-C enhanced angiogenesis and lymphangiogenesis in the wound and significantly accelerated wound healing in comparison to the control wounds. VEGF-C also recruited inflammatory cells, some of which expressed VEGFR-3. On the other hand, when the function of endogenous VEGF-C/VEGF-D was blocked with a specific inhibitor, wound closure was delayed even further. These results suggest a function for VEGF-C in wound healing and demonstrate the therapeutic potential of VEGF-C in the treatment of diabetic wounds.

[1]  G Zambruno,et al.  Adenovirus-mediated VEGF165 gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice , 2002, Gene Therapy.

[2]  Seppo Ylä-Herttuala,et al.  Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3 , 2001, Nature Medicine.

[3]  N. Ferrara The role of VEGF in the regulation of physiological and pathological angiogenesis. , 2005, EXS.

[4]  K. Alitalo,et al.  Vascular endothelial growth factor C induces angiogenesis in vivo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Pfeilschifter,et al.  Expressional Regulation of Angiopoietin-1 and -2 and the Tie-1 and -2 Receptor Tyrosine Kinases during Cutaneous Wound Healing: A Comparative Study of Normal and Impaired Repair , 2001, Laboratory Investigation.

[6]  P. Laakkonen,et al.  Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. , 2004, Journal of the American Society of Nephrology : JASN.

[7]  T. Veikkola,et al.  Lymphangiogenic Gene Therapy With Minimal Blood Vascular Side Effects , 2002, The Journal of experimental medicine.

[8]  Yihai Cao,et al.  Proteolytic processing regulates receptor specificity and activity of VEGF‐C , 1997, The EMBO journal.

[9]  A. Albini,et al.  c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Seppo Ylä-Herttuala,et al.  Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. , 2005, The Journal of clinical investigation.

[11]  K. Alitalo,et al.  Gene transfer as a tool to induce therapeutic vascular growth , 2003, Nature Medicine.

[12]  P. Carmeliet,et al.  VEGFR-1–Selective VEGF Homologue PlGF Is Arteriogenic: Evidence for a Monocyte-Mediated Mechanism , 2003, Circulation research.

[13]  Geoffrey C Gurtner,et al.  Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. , 2004, The American journal of pathology.

[14]  K. Alitalo,et al.  Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. , 2005, Blood.

[15]  K. Alitalo,et al.  Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. , 2002, The American journal of pathology.

[16]  K. Alitalo,et al.  Proinflammatory Cytokines Regulate Expression of the Lymphatic Endothelial Mitogen Vascular Endothelial Growth Factor-C* , 1998, The Journal of Biological Chemistry.

[17]  K. Alitalo,et al.  A Recombinant Mutant Vascular Endothelial Growth Factor-C that Has Lost Vascular Endothelial Growth Factor Receptor-2 Binding, Activation, and Vascular Permeability Activities* , 1998, The Journal of Biological Chemistry.

[18]  R. Kauppinen,et al.  VEGF-D Is the Strongest Angiogenic and Lymphangiogenic Effector Among VEGFs Delivered Into Skeletal Muscle via Adenoviruses , 2003, Circulation research.

[19]  M. Karkkainen,et al.  Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. , 2001, Cancer research.

[20]  K. Alitalo,et al.  VEGF‐C and VEGF‐D expression in neuroendocrine cells and their receptor, VEGFR‐3, in fenestrated blood vessels in human tissues , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  K. Alitalo,et al.  Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia , 1997, Oncogene.

[22]  K. Alitalo,et al.  The biology of vascular endothelial growth factors. , 2005, Cardiovascular research.

[23]  Wilhelm Bloch,et al.  Plasmin modulates vascular endothelial growth factor-A-mediated angiogenesis during wound repair. , 2006, The American journal of pathology.

[24]  T. Jenssen,et al.  Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. , 2000, Diabetes.

[25]  K. Alitalo,et al.  Adenoviral Expression of Vascular Endothelial Growth Factor-C Induces Lymphangiogenesis in the Skin , 2001, Circulation research.

[26]  J. Partanen,et al.  Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins , 2004, Nature Immunology.

[27]  G. Vrensen,et al.  VEGFR‐3 in adult angiogenesis , 2001, The Journal of pathology.

[28]  R. Moritz,et al.  Biosynthesis of Vascular Endothelial Growth Factor-D Involves Proteolytic Processing Which Generates Non-covalent Homodimers* , 1999, The Journal of Biological Chemistry.

[29]  Vincent Falanga,et al.  Wound healing and its impairment in the diabetic foot , 2005, The Lancet.

[30]  J. Pfeilschifter,et al.  Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. , 2000, The Journal of investigative dermatology.

[31]  K. Alitalo,et al.  Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. , 2000, The American journal of pathology.

[32]  M. Skobe,et al.  Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. , 2001, The American journal of pathology.

[33]  M. Dana,et al.  Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity , 2004, Nature Medicine.

[34]  J. Isner,et al.  Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. , 1998, The American journal of pathology.

[35]  R. Moritz,et al.  Plasmin Activates the Lymphangiogenic Growth Factors VEGF-C and VEGF-D , 2003, The Journal of experimental medicine.

[36]  H. Dvorak,et al.  Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing , 1992, The Journal of experimental medicine.

[37]  R. Gamelli,et al.  Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. , 1998, The American journal of pathology.

[38]  J. Hartikainen,et al.  Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. , 1998, Human gene therapy.

[39]  M. Héroult,et al.  Inflammatory triggers of lymphangiogenesis. , 2003, Lymphatic research and biology.