Work extraction from heat-powered quantized optomechanical setups

We analyze work extraction from an autonomous (self-contained) heat-powered optomechanical setup. The initial state of the quantized mechanical oscillator plays a key role. As the initial mean amplitude of the oscillator decreases, the resulting efficiency increases. In contrast to laser-powered self-induced oscillations, work extraction from a broadband heat bath does not require coherence or phase-locking: an initial phase-averaged coherent state of the oscillator still yields work, as opposed to an initial Fock-state.

[1]  Itamar Procaccia,et al.  Potential work: A statistical‐mechanical approach for systems in disequilibrium , 1976 .

[2]  A. Clerk,et al.  Quantum signatures of the optomechanical instability. , 2011, Physical review letters.

[3]  C. Regal,et al.  Observation of Radiation Pressure Shot Noise on a Macroscopic Object , 2012, Science.

[4]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[5]  J. Khurgin,et al.  Laser-rate-equation description of optomechanical oscillators. , 2012, Physical review letters.

[6]  G. Kurizki,et al.  Quantum bath refrigeration towards absolute zero: challenging the unattainability principle. , 2012, Physical review letters.

[7]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  G. Kurizki,et al.  Work and energy gain of heat-pumped quantized amplifiers , 2013, 1306.1472.

[10]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[11]  O. Gottlieb,et al.  Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity , 2011, 1104.2235.

[12]  Tal Carmon,et al.  Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. , 2005, Physical review letters.

[13]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[14]  J. Khurgin,et al.  Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification , 2012 .

[15]  Yanbei Chen,et al.  Macroscopic quantum mechanics: theory and experimental concepts of optomechanics , 2013, 1302.1924.

[16]  E. Buks,et al.  Forced and self-excited oscillations of an optomechanical cavity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[18]  Wolfgang P. Schleich,et al.  Quantum optics in phase space , 2001 .

[19]  Sheldon Goldstein,et al.  JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .

[20]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[21]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[22]  Göran Lindblad,et al.  Non-equilibrium entropy and irreversibility , 1983 .

[23]  S. Girvin,et al.  Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. , 2005, Physical review letters.

[24]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[25]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[26]  A. Armour,et al.  Amplitude noise suppression in cavity-driven oscillations of a mechanical resonator. , 2009, Physical review letters.

[27]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[28]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[29]  P. Lugol Annalen der Physik , 1906 .

[30]  Kerry J. Vahala,et al.  Phonon laser action in a tunable, two-level system , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[31]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[32]  P. Meystre,et al.  A short walk through quantum optomechanics , 2012, 1210.3619.

[33]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[34]  G. J. Milburn,et al.  Pulsed quantum optomechanics , 2010, Proceedings of the National Academy of Sciences.

[35]  Robert Alicki,et al.  Markovian master equation and thermodynamics of a two-level system in a strong laser field. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[37]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[38]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[39]  Gerardo Adesso,et al.  Performance bound for quantum absorption refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  A. J. Short,et al.  Extracting work from quantum systems , 2013, 1302.2811.

[41]  J M Gordon,et al.  Quantum thermodynamic cooling cycle. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Paul Skrzypczyk,et al.  Virtual qubits, virtual temperatures, and the foundations of thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. Armour,et al.  Quantum dynamics of a mechanical resonator driven by a cavity , 2012 .

[44]  P. Nation Nonclassical mechanical states in an optomechanical micromaser analog , 2013, 1308.4213.

[45]  Gershon Kurizki,et al.  Periodically driven quantum open systems: Tutorial , 2012, 1205.4552.

[46]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[47]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[48]  A. Clerk,et al.  Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime , 2013, 1310.1298.

[49]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[50]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  P. Corkum,et al.  Excitation energies, radiative and autoionization rates, dielectronic satellite lines and dielectronic recombination rates for excited states of Ag-like W from Pd-like W , 2009 .

[53]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[54]  G. Kurizki,et al.  Minimal universal quantum heat machine. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Max Ludwig,et al.  The optomechanical instability in the quantum regime , 2008, 0803.3714.

[56]  M. Aspelmeyer,et al.  Squeezing of Light via Reflection from a Silicon Micromechanical Resonator , 2013, 1302.6179.

[57]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[58]  Kerry J. Vahala,et al.  Back-action limit of linewidth in an optomechanical oscillator , 2008 .

[59]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[60]  Keye Zhang,et al.  Quantum optomechanical heat engine. , 2014, Physical review letters.

[61]  P. Nation,et al.  A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime , 2013, 1312.7521.

[62]  A. Lenard Thermodynamical proof of the Gibbs formula for elementary quantum systems , 1978 .

[63]  I. Favero,et al.  Self-induced oscillations in an optomechanical system driven by bolometric backaction. , 2007, Physical review letters.

[64]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[65]  Entropy and irreversibility in the quantum realm , 2011 .

[66]  the laser rate equation theory and experimental verification , 2012 .