Sensitivity Analysis for Declarative Relational Query Languages with Ordinal Ranks

We present sensitivity analysis for results of query executions in a relational model of data extended by ordinal ranks. The underlying model of data results from the ordinary Codd’s model of data in which we consider ordinal ranks of tuples in data tables expressing degrees to which tuples match queries. In this setting, we show that ranks assigned to tuples are insensitive to small changes, i.e., small changes in the input data do not yield large changes in the results of queries.

[1]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[2]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[3]  Dan Olteanu,et al.  Approximate confidence computation in probabilistic databases , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[4]  F. E. A Relational Model of Data Large Shared Data Banks , 2000 .

[5]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[6]  Frederick E. Petry,et al.  Fuzzy databases in the new era , 1995, SAC '95.

[7]  Michael Pittarelli,et al.  The Theory of Probabilistic Databases , 1987, VLDB.

[8]  Siegfried Gottwald,et al.  Mathematical Fuzzy Logics , 2008, Bulletin of Symbolic Logic.

[9]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[10]  Jennifer Widom,et al.  The Lowell database research self-assessment , 2003, CACM.

[11]  Vilém Vychodil,et al.  Similarity of Query Results in Similarity-Based Databases , 2011, RSKT.

[12]  Kevin Chen-Chuan Chang,et al.  RankSQL: query algebra and optimization for relational top-k queries , 2005, SIGMOD '05.

[13]  C. J. Date,et al.  Databases, Types and the Relational Model (3rd Edition) , 2006 .

[14]  Vilém Vychodil,et al.  Codd's Relational Model from the Point of View of Fuzzy Logic , 2011, J. Log. Comput..

[15]  Vilém Vychodil,et al.  Logical Foundations for Similarity-Based Databases , 2009, DASFAA Workshops.

[16]  Christoph Koch,et al.  On Query Algebras for Probabilistic Databases , 2009, SGMD.

[17]  Satoko Titani,et al.  Globalization of intui tionistic set theory , 1987, Ann. Pure Appl. Log..

[18]  Dan Suciu,et al.  Management of probabilistic data: foundations and challenges , 2007, PODS '07.

[19]  Cristina-Maria Vladarean ABOUT FUZZY DATABASE QUERY LANGUAGES AND THEIR RELATIONAL COMPLETENESS THEOREM , 2009 .

[20]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[21]  C.J.H. Mann,et al.  Fuzzy Relational Systems: Foundations and Principles , 2003 .

[22]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[23]  Vilém Vychodil,et al.  Query systems in similarity-based databases: logical foundations, expressive power, and completeness , 2010, SAC '10.

[24]  Christopher Ré,et al.  Probabilistic databases: diamonds in the dirt , 2009, CACM.

[25]  Ronald Fagin,et al.  Combining fuzzy information: an overview , 2002, SGMD.

[26]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[27]  Sujeet Shenoi,et al.  Proximity relations in the fuzzy relational database model , 1999 .

[28]  Arun K. Majumdar,et al.  Fuzzy Functional Dependencies and Lossless Join Decomposition of Fuzzy Relational Database Systems , 1988, ACM Trans. Database Syst..

[29]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[30]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[31]  Walid G. Aref,et al.  Supporting top-kjoin queries in relational databases , 2004, The VLDB Journal.