Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models

In this paper we consider a class of one-dimensional nonlinear shallow water wave models that support weak solutions. We construct new traveling wave solutions for these models. Moreover, we show that these new traveling wave solutions are stable.

[1]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[2]  W. Strauss,et al.  Stability of peakons , 2000 .

[3]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[4]  E Weinan,et al.  Probability Distribution Functions for the Random Forced Burgers Equation , 1997 .

[5]  Darryl D. Holm,et al.  An integrable shallow water equation with linear and nonlinear dispersion. , 2001, Physical review letters.

[6]  J. Marsden,et al.  Global well–posedness for the Lagrangian averaged Navier–Stokes (LANS–α) equations on bounded domains , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[8]  Darryl D. Holm,et al.  Alpha-modeling Strategy for LES of Turbulent Mixing , 2002, nlin/0202012.

[9]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[10]  Darryl D. Holm,et al.  Integrable vs. nonintegrable geodesic soliton behavior , 1999, solv-int/9903007.

[11]  Darryl D. Holm,et al.  A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.

[12]  Darryl D. Holm,et al.  The Camassa-Holm equations and turbulence , 1999 .

[13]  J. E. Marsden,et al.  The geometry and analysis of the averaged Euler equations and a new diffeomorphism group , 1999 .

[14]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[15]  S. Motamen,et al.  Nonlinear diffusion equation , 2002 .

[16]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[17]  Darryl D. Holm,et al.  Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.

[18]  Y. Sinai,et al.  Statistics of shocks in solutions of inviscid Burgers equation , 1992 .

[19]  D. H. Sattinger,et al.  Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy , 1998, solv-int/9901007.

[20]  Ping Zhang,et al.  On the weak solutions to a shallow water equation , 2000 .

[21]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[22]  Steve Shkoller Geometry and Curvature of Diffeomorphism Groups withH1Metric and Mean Hydrodynamics , 1998 .

[23]  F. T. M. Nieuwstadt,et al.  Selected papers of J.M. Burgers , 1995 .

[24]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[25]  E. Aurell,et al.  The inviscid Burgers equation with initial data of Brownian type , 1992 .

[26]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.