A Microstructurally Based Model for Recrystallization in Dual-Phase Steels

[1]  D. Fabrègue,et al.  Precipitation and Grain Growth Modelling in Ti-Nb Microalloyed Steels , 2018, Materialia.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  P. Maugis,et al.  Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels , 2018, Metallurgical and Materials Transactions A.

[4]  D. Fabrègue,et al.  Modeling of the Recrystallization and Austenite Formation Overlapping in Cold-Rolled Dual-Phase Steels During Intercritical Treatments , 2017, Metallurgical and Materials Transactions A.

[5]  Marc Bernacki,et al.  3D level set modeling of static recrystallization considering stored energy fields , 2016 .

[6]  X. Sauvage,et al.  A direct evidence of solute interactions with a moving ferrite/austenite interface in a model Fe-C-Mn alloy , 2016 .

[7]  Wicaksono Aulia Tegar A note on the Cahn solute drag model , 2015 .

[8]  D. Barbier,et al.  Interactions between ferrite recrystallization and austenite formation in high-strength steels , 2014, Journal of Materials Science.

[9]  Li Jun,et al.  Effect of heating rate on ferrite recrystallization and austenite formation of cold-roll dual phase steel , 2013 .

[10]  Dierk Raabe,et al.  Interaction between recrystallization and phase transformation during intercritical annealing in a c , 2013 .

[11]  W. Poole,et al.  The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel , 2013, Metallurgical and Materials Transactions A.

[12]  M. Militzer,et al.  3D phase field modelling of recrystallization in a low-carbon steel , 2012 .

[13]  Siamak Serajzadeh,et al.  Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model , 2012 .

[14]  P. R. Rios,et al.  Grain Boundary Pinning by Particles , 2010 .

[15]  Thierry Coupez,et al.  Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework , 2009 .

[16]  M. Dumont,et al.  Corrigendum to “Implementation of classical nucleation and growth theories for precipitation” [Acta Materialia 56 (2008) 2119–2132] , 2009 .

[17]  Thierry Coupez,et al.  Linking plastic deformation to recrystallization in metals using digital microstructures , 2008 .

[18]  Michel Perez,et al.  Implementation of classical nucleation and growth theories for precipitation , 2008 .

[19]  C. Sinclair,et al.  The Effect of Nb on the Recrystallization and Grain Growth of Ultra-High-Purity α-Fe: A Combinatorial Approach , 2007 .

[20]  W. Poole,et al.  Austenite formation during intercritical annealing , 2004 .

[21]  Y. Iijima,et al.  Diffusion of niobium in α-iron , 2003 .

[22]  Y. Bréchet,et al.  Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization , 2002 .

[23]  R. Soto,et al.  Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties , 1999 .

[24]  G. Krauss,et al.  Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel , 1985 .

[25]  S. Papson,et al.  “Model” , 1981 .

[26]  A. Götte,et al.  Metall , 1897 .

[27]  D. Barbier,et al.  Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels , 2014, Journal of Materials Science.

[28]  M. Feller-Kniepmeier,et al.  Diffusion of manganese in α-iron single crystals of different purity , 1972 .