Modelling residual mechanical properties of polymer composites after fire

Abstract A thermomechanical modelling approach is proposed for estimating the residual properties of fibre reinforced polymer composites damaged by fire. The modelling was carried out in two parts: (i) prediction of the extent of thermal decomposition (or charring) using a thermal model; and (ii) prediction of the post-fire behaviour using a two layer model that combines the properties of the undamaged laminate and the residual char. Fire experiments were performed on glass-polyester, vinyl ester, and phenolic laminates using a cone calorimeter operated at heat fluxes in the range 25-100 kW m 2, for times up to 30 min. After cooling to room temperature the thickness of the thermal damage layer was determined, along with values of the residual tensile, compressive and flexural properties. For the 'two layer' model it was found that the effective boundary between char material and undamaged laminate corresponded to the point where the residual resin content (RRC) of the laminate was 80%. Surprisingly, this value was found to hold for all three resin types tested. Using this RRC value, excellent agreement was found between the measured and predicted post-fire char thickness and the residual mechanical properties. The approach presented is the first reliable method for accurately predicting the residual properties of composites after fire.