A proximal-like method for a class of second order measure-differential inclusions describing vibro-impact problems

Abstract We are interested in the study of discrete mechanical systems subjected to frictionless unilateral constraints. The dynamics is described by a second order measure-differential inclusion for the unknown positions, completed by a Newton's impact law describing the transmission of the velocities when the constraints are saturated. By using another formulation of the problem at the velocity level, we introduce a time-stepping algorithm, inspired by the proximal methods for differential inclusions, and we prove the convergence of the approximate solutions to a solution of the Cauchy problem.

[1]  Manuel D. P. Monteiro Marques,et al.  A sweeping process approach to inelastic contact problems with general inertia operators , 2007 .

[2]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[3]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[4]  B. Lemaire About the Convergence of the Proximal Method , 1992 .

[5]  Laetitia Paoli,et al.  Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[7]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[8]  R. Jeffery Non-absolutely convergent integrals with respect to functions of bounded variation , 1932 .

[9]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[10]  Laetitia Paoli CONTINUOUS DEPENDENCE ON DATA FOR VIBRO-IMPACT PROBLEMS , 2005 .

[11]  Laetitia Paoli AN EXISTENCE RESULT FOR VIBRATIONS WITH UNILATERAL CONSTRAINTS , 2000 .

[12]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Michelle Schatzman Penalty method for impact in generalized coordinates , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .

[16]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .

[17]  Laetitia Paoli,et al.  A numerical scheme for impact problems , 1999 .

[18]  Laetitia Paoli,et al.  A convergence result for a vibro-impact problem with a general inertia operator , 2009 .

[19]  J. Moreau Standard Inelastic Shocks and the Dynamics of Unilateral Constraints , 1985 .

[20]  Laetitia Paoli,et al.  An existence result for non-smooth vibro-impact problems , 2005 .

[21]  Laetitia Paoli Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The Inelastic Impact Case , 2010 .

[22]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .