Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments

Abstract. Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role.

[1]  M. Naimi,et al.  Etude dynamique et thermique de l'écoulement de Couette-Taylor-Poiseuille; cas d'un fluide présentant un seuil d'écoulement , 1990 .

[2]  Nobuo Mitsuishi,et al.  NON-NEWTONIAN FLUID FLOW IN AN ECCENTRIC ANNULUS , 1974 .

[3]  M. Lebouché,et al.  Convection thermique pour l'écoulement de couette avec débit axial; cas d'un fluide pseudo-plastique , 1987 .

[4]  Paulo J. Oliveira Computer modelling of multidimensional multiphase flow and application to T-junctions , 1992 .

[5]  M. Escudier,et al.  Pipe flow of a thixotropic liquid , 1996 .

[6]  M. Lebouché,et al.  Thermal convection for a thermodependent herschel-bulkley fluid in an annular duct , 1996 .

[7]  Nam-Sub Woo,et al.  Flow of Newtonian and Non-Newtonian Fluids in a Concentric Annulus With Rotation of the Inner Cylinder , 2003 .

[8]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[9]  C. Desaubry,et al.  Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder , 1998 .

[10]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[11]  Fernando T. Pinho,et al.  Study of steady pipe and channel flows of a single-mode Phan-Thien–Tanner fluid , 2001 .

[12]  D. Joseph,et al.  Principles of non-Newtonian fluid mechanics , 1974 .

[13]  H. Barnes,et al.  An introduction to rheology , 1989 .

[14]  Jamshid M. Nouri,et al.  Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli , 1993, Journal of Fluid Mechanics.

[15]  A. R. Davies,et al.  Numerical modelling of pressure and temperature effects in viscoelastic flow between eccentrically rotating cylinders , 1994 .

[16]  Fernando T. Pinho,et al.  Effects of inner cylinder rotation on laminar flow of a Newtonian fluid through an eccentric annulus , 2000 .

[17]  Fernando T. Pinho,et al.  Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation , 2002 .

[18]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[19]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[20]  R. Wakeman,et al.  Numerical flow simulation of viscoplastic fluids in annuli , 1998 .

[21]  Jamshid M. Nouri,et al.  Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder , 1994 .

[22]  M. Escudier,et al.  Drag reduction in the turbulent pipe flow of polymers , 1999 .

[23]  M. Escudier,et al.  Effects of Centrebody Rotation on Laminar Flow Through an Eccentric Annulus , 1997 .

[24]  Roger I. Tanner,et al.  Numerical study of the Bingham squeeze film problem , 1984 .

[25]  M. P. Escudier,et al.  Concentric annular flow with centerbody rotation of a Newtonian and a shear-thinning liquid , 1995 .

[26]  R. Issa,et al.  NUMERICAL PREDICTION OF PHASE SEPARATION IN TWO-PHASE FLOW THROUGH T-JUNCTIONS , 1994 .