Automatic Control in Mineral Processing Plants: an Overview.

Abstract For controlling a process, one should not forget that for strongly disturbed, poorly modeled and difficult to measure processes, such as those involved in the mineral processing industry, the peripheral tools of the control loop (fault detection and isolation system, data reconciliation procedure, observers, soft sensors, optimizers, model parameter tuners…) are as important as the controller itself. The paper briefly describes each element of this generalized control loop, while putting emphasis on the mineral processing specific cases.

[1]  Daniel Hodouin,et al.  Process Observers and Data Reconciliation Using Mass and Energy Balance Equations , 2010 .

[2]  Daniel Hodouin,et al.  Design of an Adaptive Filter for a Laboratory Grinding Circuit , 1987 .

[3]  M. Hou,et al.  Multivariate statistical analysis of mineral processing plant data , 1993 .

[4]  M. Maldonado,et al.  Decentralized Control of a Pilot Flotation Column: A 3×3 System , 2008 .

[5]  Jocelyn Bouchard,et al.  Column flotation simulation and control: An overview , 2009 .

[6]  Jayson Tessier,et al.  Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes—Part I: Flotation control based on froth textural characteristics , 2006 .

[7]  Daniel Hodouin,et al.  Constrained real-time optimization of a grinding circuit using steady-state linear programming supervisory control , 2002 .

[8]  Daniel Hodouin,et al.  Economic optimisation of a flotation plant through grinding circuit tuning , 2000 .

[9]  Huangang Wang,et al.  Soft sensing of overflow particle size distributions in hydrocyclones using a combined method , 2008 .

[10]  C. M. Crowe,et al.  Data reconciliation — Progress and challenges , 1996 .

[11]  E Mazzour Optimal sensor implementation in metallurgical plants—an application to a generic mineral separation plant , 2003 .

[12]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[13]  Ian K. Craig,et al.  Economic performance assessment of two ROM ore milling circuit controllers , 2009 .

[14]  Daniel Hodouin,et al.  Nonlinear Predictive Control of a Rougher Flotation Unit Using Local Models , 1998 .

[15]  Sirkka-Liisa Jämsä-Jounela,et al.  State of the art and challenges in mineral processing control , 2000 .

[16]  D. Sbarbaro,et al.  Adaptive Soft-Sensors for On-Line Particle Size Estimation in Wet Grinding Circuits , 2004 .

[17]  Jayson Tessier,et al.  A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts , 2007 .

[18]  Ana Casali,et al.  Particle size distribution soft-sensor for a grinding circuit , 1998 .

[19]  André Desbiens,et al.  Distributed control at the Kidd Creek grinding plant. Part II: Implementation , 1997 .

[20]  Andre Desbiens,et al.  Global Predictive Control: A Unified Control Structure for Decoupling Setpoint Tracking, Feedforward Compensation and Disturbance Rejection Dynamics , 2000 .

[21]  Daniel Hodouin,et al.  Calculation of variance and covariance of sampling errors in complex mineral processing systems, using state–space dynamic models , 1998 .

[22]  Ian K. Craig,et al.  Evaluation of advanced industrial control projects: a framework for determining economic benefits , 2000 .

[23]  Daniel Hodouin,et al.  Linear and bilinear fault detection and diagnosis based on mass and energy balance equations , 2003 .

[24]  Daniel Hodouin,et al.  Synchronized node imbalances for fault detection and isolation in plant networks involving material circulation , 2007, Comput. Chem. Eng..

[25]  Michèle Basseville,et al.  Information criteria for residual generation and fault detection and isolation , 1997, Autom..

[26]  John F. MacGregor,et al.  Froth-based modeling and control of flotation processes , 2008 .

[27]  Jules Thibault,et al.  Neural net-based softsensor for dynamic particle size estimation in grinding circuits , 1997 .