Squarefree values of trinomial discriminants

The discriminant of a trinomial of the form x n x m 1 has the form n n (n m) n m m m if n and m are relatively prime. We investigate when these discriminants have nontrivial square factors. We explain various unlikely-seeming parametric families of square factors of these discriminant values: for example, whenn is congruent to 2 (mod 6) we have that ((n 2 n+1)=3) 2 always divides n n (n 1) n 1 . In addition, we discover many other square factors of these discriminants that do not t into these parametric families. The set of primes whose squares can divide these sporadic values asn varies seems to be independent ofm, and this set can be seen as a generalization of the Wieferich primes, those primes p such that 2 p is congruent to 2 (mod p 2 ). We provide heuristics for the density of these sporadic primes and the density of squarefree values of these trinomial discriminants.

[1]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[2]  F. Apéry Sur l’équation , 2010 .

[3]  D. R. Heath-Brown An estimate for Heilbronn's exponential sum , 1996 .

[4]  S. Lang,et al.  Old and new conjectured diophantine inequalities , 1990 .

[5]  Robert J. McEliece Factorization of polynomials over finite fields , 1969 .

[6]  Wilhelm Ljunggren,et al.  On the Irreducibility of Certain Trinomials and Quadrinomials. , 1960 .

[7]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[8]  R. Tijdeman,et al.  On the Oesterlé-Masser conjecture , 1986 .

[9]  M. Ram Murty,et al.  Problems in algebraic number theory , 1998 .

[10]  P. Tzermias On Cauchy–Liouville–Mirimanoff Polynomials , 2007, Canadian Mathematical Bulletin.

[11]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[12]  Hiroyuki Osada,et al.  The Galois groups of the polynomials Xn + aX1 + b , 1987 .

[13]  P. Ribenboim The new book of prime number records , 1996 .

[14]  Paulo Ribenboim,et al.  13 lectures on Fermat's last theorem , 1981 .

[15]  François G. Dorais,et al.  A Wieferich Prime Search up to 6.7 × 10 15 , 2011 .

[16]  R. G. Swan,et al.  Factorization of polynomials over finite fields. , 1962 .

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[18]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[19]  Joseph H. Silverman,et al.  Wieferich's criterion and the abc-conjecture , 1988 .

[20]  Kiran S. Kedlaya,et al.  A construction of polynomials with squarefree discriminants , 2011, 1103.5728.