Prediction of physicochemical properties.

Physicochemical properties are key factors in controlling the interactions of xenobiotics with living organisms. Computational approaches to toxicity prediction therefore generally rely to a very large extent on the physicochemical properties of the query compounds. Consequently it is important that reliable in silico methods are available for the rapid calculation of physicochemical properties. The key properties are partition coefficient, aqueous solubility, and pKa and, to a lesser extent, melting point, boiling point, vapor pressure, and Henry's law constant (air-water partition coefficient). The calculation of each of these properties from quantitative structure-property relationships (QSPRs) and from available software is discussed in detail, and recommendations made. Finally, detailed consideration is given of guidelines for the development of QSPRs and QSARs.

[1]  A. Ben Wagner Finding Physical Properties of Chemicals , 2001 .

[2]  Peter C. Jurs,et al.  Prediction of Vapor Pressures of Hydrocarbons and Halohydrocarbons from Molecular Structure with a Computational Neural Network Model , 1999, J. Chem. Inf. Comput. Sci..

[3]  Igor V. Tetko,et al.  Prediction of n-Octanol/Water Partition Coefficients from PHYSPROP Database Using Artificial Neural Networks and E-State Indices , 2001, J. Chem. Inf. Comput. Sci..

[4]  D. Donaldson,et al.  Molecular polarizability as a single-parameter predictor of vapour pressures and octanol–air partitioning coefficients of non-polar compounds: a priori approach and results , 2004 .

[5]  F. Darvas,et al.  Prediction of distribution coefficient from structure. 2. Validation of Prolog D, an expert system. , 1997, Journal of pharmaceutical sciences.

[6]  X. Ju,et al.  QSPR Study on the Aqueous Solubility (−lgSw) and n-Octanol/Water Partition Coefficients (lgKow) of Polychlorinated Dibenzo-p-dioxins (PCDDs) , 2007 .

[7]  Chein-Hsiun Tu,et al.  Group-contribution method for the estimation of vapor pressures , 1994 .

[8]  Valérie Zuang,et al.  A Modular Approach to the ECVAM Principles on Test Validity , 2004, Alternatives to laboratory animals : ATLA.

[9]  Han van de Waterbeemd,et al.  Substructure and whole molecule approaches for calculating log P , 2001, J. Comput. Aided Mol. Des..

[10]  G. Romanelli An improved QSAR study of toxicity of saturated alcohols , 2000 .

[11]  K. Schaper,et al.  Analysis of Water Solubility Data on the Basis of HYBOT Descriptors. Part 3. Solubility of Solid Neutral Chemicals and Drugs , 2003 .

[12]  Haifeng Chen,et al.  In Silico Log P Prediction for a Large Data Set with Support Vector Machines, Radial Basis Neural Networks and Multiple Linear Regression , 2009, Chemical biology & drug design.

[13]  Stephen R. Johnson,et al.  Recent progress in the computational prediction of aqueous solubility and absorption , 2006, The AAPS Journal.

[14]  Bahram Hemmateenejad,et al.  Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes: a combined data splitting-feature selection strategy. , 2007, Analytica chimica acta.

[15]  Marc C. Nicklaus,et al.  Comparison of Nine Programs Predicting pKa Values of Pharmaceutical Substances , 2009, J. Chem. Inf. Model..

[16]  John Manchester,et al.  Evaluation of pKa Estimation Methods on 211 Druglike Compounds , 2010, J. Chem. Inf. Model..

[17]  Y. Kuznetsov,et al.  Prediction of Vapour Pressure and Boiling Points of Aliphatic Compounds , 1994 .

[18]  Sujit Banerjee,et al.  Aqueous solubility : methods of estimation for organic compounds , 1992 .

[19]  Romualdo Benigni,et al.  Predictivity of QSAR , 2008, J. Chem. Inf. Model..

[20]  L. Manna,et al.  QSPR prediction of N-boiling point and critical properties of organic compounds and comparison with a group-contribution method , 2008 .

[21]  J. Hine,et al.  Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions , 1975 .

[22]  J. Dearden,et al.  The Use of Atomic Charges and Orbital Energies as Hydrogen‐bonding‐donor Parameters for QSAR Studies: Comparison of MNDO, AM1 and PM3 Methods , 2000, The Journal of pharmacy and pharmacology.

[23]  R. M. Muir,et al.  Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients , 1962, Nature.

[24]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[25]  D. Livingstone Theoretical property predictions. , 2003, Current topics in medicinal chemistry.

[26]  Stephen E. Stein,et al.  Estimation of normal boiling points from group contributions , 1994, J. Chem. Inf. Comput. Sci..

[27]  David J. Livingstone,et al.  Data analysis for chemists , 1995 .

[28]  Alexander Golbraikh,et al.  Rational selection of training and test sets for the development of validated QSAR models , 2003, J. Comput. Aided Mol. Des..

[29]  Ralph Kühne,et al.  Model Selection Based on Structural Similarity-Method Description and Application to Water Solubility Prediction , 2006, J. Chem. Inf. Model..

[30]  John C Dearden,et al.  Quantitative structure‐property relationships for prediction of boiling point, vapor pressure, and melting point , 2003, Environmental toxicology and chemistry.

[31]  Kunal Roy,et al.  On Selection of Training and Test Sets for the Development of Predictive QSAR models , 2006 .

[32]  Yuki Sakuratani,et al.  Comparison of Predictivities of Log P Calculation Models Based on Experimental Data for 134 Simple Organic Compounds , 2007 .

[33]  M. Abraham,et al.  The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. , 1999, Journal of pharmaceutical sciences.

[34]  Cikui Liang,et al.  QSPR Prediction of Vapor Pressure from Solely Theoretically-Derived Descriptors , 1998, J. Chem. Inf. Comput. Sci..

[35]  Stephen R. Johnson,et al.  The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy) , 2008, J. Chem. Inf. Model..

[36]  Elena Soriano,et al.  Computational determination of pKa values. A comparison of different theoretical approaches and a novel procedure , 2004 .

[37]  W. Banks 65. Considerations of a vapour pressure–temperature equation, and their relation to Burnop's boiling-point function , 1939 .

[38]  M. Karelson,et al.  Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics , 1996 .

[39]  M. T. D. Cronin Chapter 11:Characterisation, Evaluation and Possible Validation of In Silico Models for Toxicity: Determining if a Prediction is Valid , 2010 .

[40]  Eduardo A. Castro,et al.  QSPR Studies on Aqueous Solubilities of Drug-Like Compounds , 2009, International journal of molecular sciences.

[41]  Subhash C. Basak,et al.  Use of mathematical structural invariants in the development of QSPR models , 2001 .

[42]  Samuel H. Yalkowsky,et al.  Melting Point, Boiling Point, and Symmetry , 1990, Pharmaceutical Research.

[43]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[44]  Alan R. Katritzky,et al.  Prediction of Melting Points for the Substituted Benzenes: A QSPR Approach , 1997, J. Chem. Inf. Comput. Sci..

[45]  Andreas Klamt,et al.  First Principles Calculations of Aqueous pKa Values for Organic and Inorganic Acids Using COSMO-RS Reveal an Inconsistency in the Slope of the pKa Scale. , 2003, The journal of physical chemistry. A.

[46]  R. L. Robinson,et al.  SVRC–QSPR model for predicting saturated vapor pressures of pure fluids , 2006 .

[47]  J. Dearden The prediction of melting point , 1999 .

[48]  A. L. Horvath Molecular Design: Chemical Structure Generation from the Properties of Pure Organic Compounds , 1992 .

[49]  Mark T. D. Cronin,et al.  QSAR STUDY OF THE TOXICITY OF NITROBENZENES TO TETRAHYMENA PYRIFORMIS , 1995 .

[50]  Svetoslav H. Slavov,et al.  Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. , 2010, Chemical reviews.

[51]  F. Gharagheizi,et al.  Prediction of Henry’s Law Constant of Organic Compounds in Water from a New Group-Contribution-Based Model , 2010 .

[52]  J. Dearden,et al.  The QSAR prediction of melting point, a property of environmental relevance. , 1991, The Science of the total environment.

[53]  Yilin Wang,et al.  QSPR Studies on Vapor Pressure, Aqueous Solubility, and the Prediction of Water-Air Partition Coefficients , 1998, J. Chem. Inf. Comput. Sci..

[54]  Andreas Klamt,et al.  Accurate prediction of basicity in aqueous solution with COSMO‐RS , 2006, J. Comput. Chem..

[55]  G P Moss,et al.  Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. , 1999, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[56]  A. Site,et al.  The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature , 1997 .

[57]  J. Dearden,et al.  How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR) , 2009, SAR and QSAR in environmental research.

[58]  John C Dearden,et al.  Guidelines for developing and using quantitative structure‐activity relationships , 2003, Environmental toxicology and chemistry.

[59]  J. Topliss,et al.  Chance correlations in structure-activity studies using multiple regression analysis , 1972 .

[60]  A. Ghose,et al.  Atomic physicochemical parameters for three dimensional structure directed quantitative structure‐activity relationships III: Modeling hydrophobic interactions , 1988 .

[61]  Gilles Klopman,et al.  A computer automated structure evaluation (CASE) approach to calculation of partition coefficient , 1991 .

[62]  David Robert,et al.  Use of electron-electron repulsion energy as a molecular descriptor in QSAR and QSPR studies , 2000, J. Comput. Aided Mol. Des..

[63]  Hao Zhu,et al.  Estimation of the Aqueous Solubility of Organic Molecules by the Group Contribution Approach , 2001, J. Chem. Inf. Comput. Sci..

[64]  J. Dearden,et al.  Predicting Fate-Related Physicochemical Properties , 2007 .

[65]  J C Madden,et al.  Structure-based modelling in reproductive toxicology: (Q)SARs for the placental barrier , 2007, SAR and QSAR in environmental research.

[66]  Alexandre Arenas,et al.  A Fuzzy ARTMAP Based on Quantitative Structure-Property Relationships (QSPRs) for Predicting Aqueous Solubility of Organic Compounds , 2001, J. Chem. Inf. Comput. Sci..

[67]  S C Basak,et al.  Predicting the vapour pressure of chemicals from structure: a comparison of graph theoretic versus quantum chemical descriptors , 2009, SAR and QSAR in environmental research.

[68]  Ralph Kühne,et al.  Estimation of vapour pressures for hydrocarbons and halogenated hydrocarbons from chemical structure by a neural network , 1997 .

[69]  Erik Johansson,et al.  On the selection of the training set in environmental QSAR analysis when compounds are clustered , 2000 .

[70]  Peter C. Jurs,et al.  Computer-assisted study of the relationship between molecular structure and Henry's law constant , 1992 .

[71]  Thomas Hofmann,et al.  Predicting CNS Permeability of Drug Molecules: Comparison of Neural Network and Support Vector Machine Algorithms , 2002, J. Comput. Biol..

[72]  Mark T. D. Cronin,et al.  Predicting Chemical Toxicity and Fate , 2004 .

[73]  T. Brown,et al.  Computational determination of aqueous pKa values of protonated benzimidazoles (part 1). , 2006, The journal of physical chemistry. B.

[74]  M. Reinhard,et al.  Handbook for estimating physicochemical properties of organic compounds , 1999 .

[75]  Saravanaraj N. Ayyampalayam,et al.  In Silico Prediction of Ionization Constants of Drugs , 2007 .

[76]  Tomas Öberg,et al.  Global and Local PLS Regression Models to Predict Vapor Pressure , 2008 .

[77]  Alexander Golbraikh,et al.  Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection , 2002, J. Comput. Aided Mol. Des..

[78]  J. Dearden,et al.  QSPR Prediction of Henry’s Law Constant: Improved Correlation with New Parameters , 2000 .

[79]  Paola Gramatica,et al.  The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models , 2003 .

[80]  Gordon M. Crippen,et al.  pKa Prediction of Monoprotic Small Molecules the SMARTS Way , 2008, J. Chem. Inf. Model..

[81]  Edmund J. Mills XXIII. On melting-point and boiling-point as related to chemical composition , 1884 .

[82]  C. Hansch,et al.  Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids , 1968 .

[83]  Julen Oyarzabal,et al.  Optimizing the Performance of In Silico ADMET General Models According to Local Requirements: MARS Approach. Solubility Estimations As Case Study , 2009, J. Chem. Inf. Model..

[84]  S. Yalkowsky,et al.  Solubility and partitioning I: Solubility of nonelectrolytes in water. , 1980, Journal of pharmaceutical sciences.

[85]  D. Young,et al.  Are the Chemical Structures in Your QSAR Correct , 2008 .

[86]  Peter Gedeck,et al.  QSAR - How Good Is It in Practice? Comparison of Descriptor Sets on an Unbiased Cross Section of Corporate Data Sets , 2006, J. Chem. Inf. Model..

[87]  Milan Meloun,et al.  Benchmarking and validating algorithms that estimate pKa values of drugs based on their molecular structures , 2007, Analytical and bioanalytical chemistry.

[88]  John C. Dearden,et al.  QSPR Correlation of Melting Point for Drug Compounds Based on Different Sources of Molecular Descriptors , 2006, J. Chem. Inf. Model..

[89]  Ulf Norinder,et al.  Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs , 2003, J. Chem. Inf. Comput. Sci..

[90]  Peter Lind,et al.  Support Vector Machines for the Estimation of Aqueous Solubility , 2003, J. Chem. Inf. Comput. Sci..

[91]  Neera Jain,et al.  Estimation of Aqueous Solubility By The General Solubility Equation (GSE) The Easy Way , 2003 .

[92]  Gilles Klopman,et al.  Recent methodologies for the estimation of n-octanol/water partition coefficients and their use in the prediction of membrane transport properties of drugs. , 2005, Mini reviews in medicinal chemistry.

[93]  J Devillers,et al.  e-Statistics for deriving QSAR models , 2002, SAR and QSAR in environmental research.

[94]  Scott D. Kahn,et al.  Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships , 2005, Alternatives to laboratory animals : ATLA.

[95]  Loriano Storchi,et al.  New and Original pKa Prediction Method Using Grid Molecular Interaction Fields , 2007, J. Chem. Inf. Model..

[96]  Samuel H. Yalkowsky,et al.  Group Contribution Methods for Predicting the Melting Points and Boiling Points of Aromatic Compounds , 1994 .

[97]  Florian Nigsch,et al.  Why Are Some Properties More Difficult To Predict than Others? A Study of QSPR Models of Solubility, Melting Point, and Log P , 2008, J. Chem. Inf. Model..

[98]  László Orfi,et al.  Comparison of predictive ability of water solubility QSPR models generated by MLR, PLS and ANN methods. , 2004, Mini reviews in medicinal chemistry.

[99]  C. Hansch,et al.  A NEW SUBSTITUENT CONSTANT, PI, DERIVED FROM PARTITION COEFFICIENTS , 1964 .

[100]  Svetoslav H. Slavov,et al.  Rapid QSPR model development technique for prediction of vapor pressure of organic compounds , 2007, Comput. Chem. Eng..

[101]  John C Dearden,et al.  QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. , 2007, Chemosphere.

[102]  Marc Parham,et al.  Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation. , 2004, Chemistry & biodiversity.

[103]  Neera Jain,et al.  Prediction of Aqueous Solubility of Organic Compounds by the General Solubility Equation (GSE) , 2001, J. Chem. Inf. Comput. Sci..

[104]  C Silipo,et al.  Calculation of hydrophobic constant (log P) from pi and f constants. , 1975, Journal of medicinal chemistry.

[105]  Gerrit Schüürmann,et al.  Quantitative structure‐property relationships for predicting henry's law constant from molecular structure , 2003, Environmental toxicology and chemistry.

[106]  Daniel Cabrol-Bass,et al.  Evaluation in Quantitative Structure-Property Relationship Models of Structural Descriptors Derived from Information-Theory Operators , 2000, J. Chem. Inf. Comput. Sci..

[107]  J. Dearden,et al.  Partitioning and lipophilicity in quantitative structure-activity relationships. , 1985, Environmental health perspectives.

[108]  Lionel A. Carreira,et al.  A RIGOROUS TEST FOR SPARC'S CHEMICAL REACTIVITY MODELS : ESTIMATION OF MORE THAN 4300 IONIZATION PKAS , 1995 .

[109]  R. Mannhold,et al.  Calculation of molecular lipophilicity: state of the art and comparison of methods on more than 96000 compounds , 2009, Journal of pharmaceutical sciences.

[110]  Philip H. Howard,et al.  Bond contribution method for estimating henry's law constants , 1991 .

[111]  R. Schwarzenbach,et al.  Environmental Organic Chemistry , 1993 .

[112]  John L. Oscarson,et al.  Use of the DIPPR Database for Development of QSPR Correlations: Normal Boiling Point , 2002 .

[113]  Yoram Cohen,et al.  Neural Network Based Temperature-Dependent Quantitative Structure Property Relations (QSPRs) for Predicting Vapor Pressure of Hydrocarbons , 2001, J. Chem. Inf. Comput. Sci..

[114]  N. Bodor,et al.  A new method for the estimation of partition coefficient , 1989 .

[115]  M. Hewitt,et al.  Chapter 12:Developing the Applicability Domain of In Silico Models: Relevance, Importance and Methods , 2010 .

[116]  H. Mewes,et al.  Can we estimate the accuracy of ADME-Tox predictions? , 2006, Drug discovery today.

[117]  Nagamany Nirmalakhandan,et al.  QSAR model for predicting Henry's constant , 1988 .

[118]  D. Manallack,et al.  Prediction of drug solubility from molecular structure using a drug-like training set , 2008, SAR and QSAR in environmental research.

[119]  K. Gasem,et al.  An Improved Structure−Property Model for Predicting Melting-Point Temperatures , 2006 .

[120]  H. Waterbeemd Improving compound quality through in vitro and in silico physicochemical profiling. , 2009 .

[121]  Harpreet S. Chadha,et al.  Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of seiler. , 1994, Journal of pharmaceutical sciences.

[122]  Vincenzo Mollica,et al.  Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution , 1981 .

[123]  L. Hall,et al.  Molecular Structure Description: The Electrotopological State , 1999 .

[124]  S. Yalkowsky,et al.  Estimation of aqueous solubility and melting point of PCB congeners , 1990 .

[125]  Alexandre Arenas,et al.  A Fuzzy ARTMAP-Based Quantitative Structure-Property Relationship (QSPR) for the Henry's Law Constant of Organic Compounds , 2003, J. Chem. Inf. Comput. Sci..

[126]  Alan Talevi,et al.  New QSPR study for the prediction of aqueous solubility of drug-like compounds. , 2008, Bioorganic & medicinal chemistry.

[127]  R. Parthasarathi,et al.  pKa prediction using group philicity. , 2006, The journal of physical chemistry. A.

[128]  S. Yalkowsky,et al.  Estimation of melting point of flexible molecules: Aliphatic hydrocarbons , 1988 .

[129]  Lowell H. Hall,et al.  Boiling Point and Critical Temperature of a Heterogeneous Data Set: QSAR with Atom Type Electrotopological State Indices Using Artificial Neural Networks , 1996, J. Chem. Inf. Comput. Sci..

[130]  Robert S. Boethling,et al.  Handbook of Property Estimation Methods for Chemicals : Environmental Health Sciences , 2000 .

[131]  Gilles Klopman,et al.  Application of the multiple computer automated structure evaluation methodology to a quantitative structure–activity relationship study of acidity , 1994, J. Comput. Chem..

[132]  J. Dearden In silico prediction of aqueous solubility , 2006, Expert opinion on drug discovery.

[133]  P Gramatica,et al.  3D-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. , 1997, SAR and QSAR in environmental research.

[134]  J. C. Madden Chapter 2:Introduction to QSAR and Other In Silico Methods to Predict Toxicity , 2010 .

[135]  Mark T. D. Cronin,et al.  The better predictive model: High q2 for the training set or low root mean square error of prediction for the test set? , 2005 .

[136]  J. Hine,et al.  THE INTRINSIC HYDROPHILIC CHARACTER OF ORGANIC COMPOUNDS, CORRELATIONS IN TERMS OF STRUCTURAL CONTRIBUTIONS , 1975 .

[137]  J. Dearden,et al.  QSAR Investigation of New Cognition Enhancers , 2009 .

[138]  S. Parapini,et al.  Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. , 2002, Journal of medicinal chemistry.

[139]  Robert C. Glen,et al.  Random Forest Models To Predict Aqueous Solubility , 2007, J. Chem. Inf. Model..

[140]  M. Nendza Structure-activity relationships in environmental sciences , 1998 .

[141]  Loriano Storchi,et al.  In silico pKa Prediction and ADME Profiling , 2009, Chemistry & biodiversity.

[142]  Muthukumarasamy Karthikeyan,et al.  General Melting Point Prediction Based on a Diverse Compound Data Set and Artificial Neural Networks , 2005, J. Chem. Inf. Model..

[143]  Peter C. Jurs,et al.  Prediction of Normal Boiling Points for a Diverse Set of Industrially Important Organic Compounds from Molecular Structure , 1995, J. Chem. Inf. Comput. Sci..

[144]  P. H. Rowe Chapter 9:Statistical Methods for Continuous Measured Endpoints in In Silico Toxicology , 2010 .

[145]  Dan C. Fara,et al.  "In Silico" Design of New Uranyl Extractants Based on Phosphoryl-Containing Podands: QSPR Studies, Generation and Screening of Virtual Combinatorial Library, and Experimental Tests , 2004, J. Chem. Inf. Model..

[146]  Michael H. Abraham,et al.  Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination , 1994 .

[147]  Ruifeng Liu,et al.  Using Molecular Fingerprint as Descriptors in the QSPR Study of Lipophilicity , 2008, J. Chem. Inf. Model..

[148]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[149]  György M. Keserű,et al.  Comparative Evaluation of in Silico pKa Prediction Tools on the Gold Standard Dataset , 2009 .

[150]  Helmut Segner,et al.  Data quality assessment for in silico methods: A survey of approaches and needs , 2010 .

[151]  Alan R. Katritzky,et al.  A QSPR Study of the Solubility of Gases and Vapors in Water , 1996, J. Chem. Inf. Comput. Sci..

[152]  Luwei Zhao,et al.  A Combined Group Contribution and Molecular Geometry Approach for Predicting Melting Points of Aliphatic Compounds , 1999 .

[153]  P. Labute A widely applicable set of descriptors. , 2000, Journal of molecular graphics & modelling.