Measures for the organization of self-organizing maps

The "self-organizing" dynamics of Self-Organizing Maps (SOMs) is a prominent property of the model that is intuitiely very accessible. Nevertheless, a rigorous definition of a measure for the state of organization of a SOM that is also natural, captures the intuitive properties of organization and proves to be useful in practice, is quite difficult to formulate. The goal of this chapter is to give an overview over the relevant problems in and different approaches towards the development of organization measures for SOMs.

[1]  W. Ashby,et al.  Principles of the self-organizing dynamic system. , 1947, The Journal of general psychology.

[2]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[3]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[4]  A. Merrison Pure and applied , 1976 .

[5]  Michael Henle,et al.  A combinatorial introduction to topology , 1978 .

[6]  L. Reichl A modern course in statistical physics , 1980 .

[7]  A. I. Mees,et al.  Dynamics of feedback systems , 1981 .

[8]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[9]  E. Aronson,et al.  Theory and method , 1985 .

[10]  M. Cottrell,et al.  Etude d'un processus d'auto-organisation , 1987 .

[11]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[12]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[13]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[14]  Gottfried Jetschke,et al.  Mathematik der Selbstorganisation , 1989 .

[15]  S. P. Luttrell,et al.  Self-organisation: a derivation from first principles of a class of learning algorithms , 1989, International 1989 Joint Conference on Neural Networks.

[16]  Jirí Benes,et al.  On neural networks , 1990, Kybernetika.

[17]  Mohamed Mansour,et al.  Single-channel controllability of interconnected systems , 1991 .

[18]  Roberto Togneri,et al.  Dimension of the speech space , 1991 .

[19]  Klaus Pawelzik,et al.  Quantifying the neighborhood preservation of self-organizing feature maps , 1992, IEEE Trans. Neural Networks.

[20]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[21]  Daniel Polani,et al.  Adaptation of Kohonen Feature Map Topologies by Genetic Algorithms , 1992, PPSN.

[22]  Pierre Demartines,et al.  Kohonen Self-Organizing Maps: Is the Normalization Necessary? , 1992, Complex Syst..

[23]  Dominique Martinez,et al.  On an Unsupervised Learning Rule for Scalar Quantization following the Maximum Entropy Principle , 1993, Neural Computation.

[24]  Daniel Polani,et al.  Training Kohonen Feature Maps in Different Topologies: An Analysis Using Genetic Algorithms , 1993, ICGA.

[25]  Gilles Pagès,et al.  Two or three things that we know about the Kohonen algorithm , 1994, ESANN.

[26]  Thomas Martinetz,et al.  Topology representing networks , 1994, Neural Networks.

[27]  Wolfgang Rosenstiel,et al.  Improvement of learning results of the selforganizing map by calculating fractal dimensions , 1994, ESANN.

[28]  M. McInerney,et al.  Training the self-organizing feature map using hybrids of genetic and Kohonen methods , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[29]  R. Der,et al.  A new quantitative measure of topology preservation in Kohonen's feature maps , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[30]  Ralf Der,et al.  A Novel Approach to Measure the Topology Preservation of Feature Maps , 1994 .

[31]  James C. Bezdek,et al.  An index of topological preservation for feature extraction , 1995, Pattern Recognit..

[32]  Kenji Nakayama,et al.  Topology analysis of data space using self-organizing feature map , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[33]  Samuel Kaski,et al.  Comparing Self-Organizing Maps , 1996, ICANN.

[34]  Terrence J. Sejnowski,et al.  Objective Functions for Neural Map Formation , 1997, ICANN.

[35]  Terrence J. Sejnowski,et al.  Objective Functions for Topography: A Comparison of Optimal Maps , 1997, NCPW.

[36]  Thomas Villmann,et al.  Topology preservation in self-organizing feature maps: exact definition and measurement , 1997, IEEE Trans. Neural Networks.

[37]  Marc M. Van Hulle,et al.  Topology-preserving Map Formation Achieved with a Purely Local Unsupervised Competitive Learning Rule , 1997, Neural Networks.

[38]  Daniel Polani Fitness Functions for the Optimization of Self-Organizing Maps , 1997, ICGA.

[39]  DemartinesP.,et al.  Curvilinear component analysis , 1997 .

[40]  Terrence J. Sejnowski,et al.  A Unifying Objective Function for Topographic Mappings , 1997, Neural Computation.

[41]  Marc M. Van Hulle Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs , 1997, Biological Cybernetics.

[42]  Daniel Polani,et al.  Order Parameters for Self-Organizing Maps , 1998 .

[43]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[44]  Klaus Obermayer,et al.  Self-organizing maps: Generalizations and new optimization techniques , 1998, Neurocomputing.

[45]  Thomas Villmann,et al.  Neural maps and topographic vector quantization , 1999, Neural Networks.

[46]  Daniel Polani On the Optimization of Self-Organizing Maps by Genetic Algorithms , 1999 .

[47]  T. Villmann,et al.  Topology Preservation in Self-Organizing Maps , 1999 .

[48]  T. Heskes Energy functions for self-organizing maps , 1999 .

[49]  Marc M. Van Hulle,et al.  Faithful Representations and Topographic Maps: From Distortion- to Information-Based Self-Organization , 2000 .