Functional Implications of Active Currents in the Dendrites of Pyramidal Neurons

The original analyses of the transformation of synaptic inputs into voltage deflections at the soma were based largely on studies of motoneurons (Coombs et al., 1957a, b) and suggested that motoneuron dendrites were electrically passive. The view was that synaptic inputs summed algebraically, with excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) offsetting each other, and an output signal emitted if and only if the net summed voltage reached at a spike initiation zone at the axon hillock exceeded a threshold. The notion that the input-output transform accomplished by neurons was based upon the simple summation of inputs at a single integration point was so strongly embedded that when Eccles et al. (1958) found evidence for active dendritic spikes in axotomized motoneurons, they regarded the nonlinear boosting and multiple regions of integration implied by these events to be undesirable (further discussion in Sections 2 and 4 below).

[1]  J. Eccles,et al.  The interpretation of spike potentials of motoneurones , 1957, The Journal of physiology.

[2]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[3]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[4]  H. Dale,et al.  The significance of the suprarenal capsules in the action of certain alkaloids , 1912, The Journal of physiology.

[5]  Daniel L. Alkon,et al.  Cellular Mechanisms of Conditioning and Behavioral Plasticity , 1988, Springer US.

[6]  J. Barker,et al.  Fast pre-potential generation in rat hippocampal ca1 pyramidal neurons , 1993, Neuroscience.

[7]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[8]  W. Catterall,et al.  Functional Co-expression of the 1 and Type IIA Subunits of Sodium Channels in a Mammalian Cell Line (*) , 1995, The Journal of Biological Chemistry.

[9]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[10]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[11]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[12]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[13]  A. Borst The theoretical foundation of dendritic function edited by I. Segev, J. Rinzel and G.M. Shepherd, The MIT Press, 1995. $55.00 (vii + 465 pages) ISBN 0 262 19356 6 , 1995, Trends in Neurosciences.

[14]  R. Lipowsky,et al.  Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. , 1996, Journal of neurophysiology.

[15]  R. Traub,et al.  Simulations of epileptiform activity in the hippocampal CA3 region in vitro , 1994, Hippocampus.

[16]  A. Thomson,et al.  Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex , 1993, Neuroscience.

[17]  R. Llinás,et al.  The spatial distribution of ionic conductances in normal and axotomized motorneurons , 1977, Neuroscience.

[18]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[19]  J. Eccles,et al.  The generation of impulses in motoneurones , 1957, The Journal of physiology.

[20]  D. Johnston,et al.  Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. , 1995, Journal of neurophysiology.

[21]  W. Precht,et al.  Preferred Centripetal Conduction of Dendritic Spikes in Alligator Purkinje Cells , 1969, Science.

[22]  Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex. , 1993, Journal of neurophysiology.

[23]  J. Barker,et al.  Localization of tetrodotoxin-sensitive field potentials of CA1 pyramidal cells in the rat hippocampus. , 1989, Journal of neurophysiology.

[24]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[25]  Charles M. Gray,et al.  Simulations of Intrinsically Bursting Neocortical Pyramidal Neurons , 1994, Neural Computation.

[26]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[27]  William R. Holmes,et al.  Effects of uniform and non-uniform synaptic ‘activation-distributions’ on the cable properties of modeled cortical pyramidal neurons , 1989, Brain Research.

[28]  R Llinás,et al.  Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.

[29]  W. N. Ross,et al.  Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[31]  T. H. Brown,et al.  Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. , 1994, Journal of neurobiology.

[32]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[33]  D. Prince,et al.  Participation of calcium spikes during intrinsic burst firing in hippocampal neurons , 1978, Brain Research.

[34]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Gillessen,et al.  Amplification of EPSPs by low Ni(2+)- and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1997, Journal of neurophysiology.

[36]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  John A. Freeman,et al.  Dendritic Spikes and Their Inhibition in Alligator Purkinje Cells , 1968, Science.

[38]  J. Hablitz,et al.  EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs. , 1989, Journal of neurophysiology.

[39]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[40]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[41]  William A Catterall,et al.  Muscarinic Modulation of Sodium Current by Activation of Protein Kinase C in Rat Hippocampal Neurons , 1996, Neuron.

[42]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[43]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  R. Llinás,et al.  Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. , 1979, Journal of neurophysiology.

[45]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[46]  P. Schwindt,et al.  Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. , 1988, Journal of neurophysiology.

[47]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[48]  C Blakemore,et al.  Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. , 1993, The Journal of physiology.

[49]  D. Perkel,et al.  Quantitative methods for predicting neuronal behavior , 1981, Neuroscience.

[50]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[54]  C. Stevens,et al.  Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma , 1971, The Journal of physiology.

[55]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[56]  The dendritic origins of fast prepotentials in pyramidal cells , 1997 .

[57]  M. Stewart,et al.  Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea‐pig hippocampus. , 1992, The Journal of physiology.

[58]  J M Bekkers,et al.  Apical Dendritic Location of Slow Afterhyperpolarization Current in Hippocampal Pyramidal Neurons: Implications for the Integration of Long-Term Potentiation , 1996, The Journal of Neuroscience.

[59]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[60]  D. Purpura,et al.  Properties of synaptic activities and spike potentials of neurons in immature neocortex. , 1965, Journal of neurophysiology.

[61]  D. Johnston,et al.  Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons , 1996, The Journal of Neuroscience.

[62]  J. Cooley,et al.  Action potential of the motorneuron , 1973 .

[63]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. , 1994, Journal of neurophysiology.

[64]  W. Catterall,et al.  Modulation of sodium and calcium channels by protein phosphorylation and G proteins. , 1997, Advances in second messenger and phosphoprotein research.

[65]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[66]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[68]  J. Barker,et al.  The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[70]  G G Haddad,et al.  Functional properties of rat and human neocortical voltage-sensitive sodium currents. , 1994, Journal of neurophysiology.

[71]  A. Friedman,et al.  Intracellular Calcium and Control of Burst Generation in Neurons of Guinea‐Pig Neocortex in Vitro , 1989, The European journal of neuroscience.

[72]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[73]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  J. Hablitz,et al.  EPSPs in rat neocortical neurons in vitro. I. Electrophysiological evidence for two distinct EPSPs. , 1989, Journal of neurophysiology.

[75]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[76]  P. Schwartzkroin,et al.  Electrophysiology of Hippocampal Neurons , 1987 .

[77]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[78]  Idan Segev,et al.  Dendritic Spine Synapses, Excitable Spine Clusters, and Plasticity , 1988 .

[79]  B. Connors,et al.  Regenerative activity in apical dendrites of pyramidal cells in neocortex. , 1993, Cerebral cortex.

[80]  B LIBET,et al.  The behaviour of chromatolysed motoneurones studied by intracellular recording , 1958, The Journal of physiology.

[81]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[82]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[84]  R Llinás,et al.  Alterations of synaptic action in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.

[85]  D. Johnston,et al.  Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. , 1995, Journal of neurophysiology.

[86]  R. W. Turner,et al.  Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis. , 1987, Journal of neurophysiology.

[87]  P. Schwartzkroin,et al.  Further characteristics of hippocampal CA1 cells in vitro , 1977, Brain Research.

[88]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[89]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[90]  J Deuchars,et al.  Relationships between morphology and physiology of pyramid‐pyramid single axon connections in rat neocortex in vitro. , 1994, The Journal of physiology.

[91]  Idan Segev,et al.  Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[92]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[94]  D. Prince,et al.  Sodium channels in dendrites of rat cortical pyramidal neurons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[96]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[97]  P. Schwindt,et al.  Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. , 1988, Journal of neurophysiology.

[98]  Bartlett W. Mel NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron , 1992, Neural Computation.

[99]  Y. Yaari,et al.  Spike after‐depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. , 1996, The Journal of physiology.

[100]  R Llinás,et al.  Electroresponsive properties of dendrites in central neurons. , 1975, Advances in neurology.

[101]  R. Nicoll,et al.  Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus , 1982, Nature.

[102]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[103]  Nicholas P. Poolos,et al.  Dendritic action potentials activated by NMDA receptor-mediated EPSPs in CA1 hippocampal pyramidal cells , 1990, Brain Research.

[104]  W Zieglgänsberger,et al.  Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. , 1991, Journal of neurophysiology.

[105]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[106]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[107]  D. Tank,et al.  Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation , 1989, Nature.

[108]  A. Thomson A magnesium‐sensitive post‐synaptic potential in rat cerebral cortex resembles neuronal responses to N‐methylaspartate. , 1986, The Journal of physiology.

[109]  D. Prince,et al.  Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features , 1990, The Journal of comparative neurology.

[110]  J. Lambert,et al.  Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. , 1995, The Journal of physiology.

[111]  A. Friedman,et al.  Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  B. Vogt The Role of Layer I in Cortical Function , 1991 .

[113]  D. Prince,et al.  Electrophysiology of isolated hippocampal pyramidal dendrites , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[115]  P Anderson,et al.  Thresholds of action potentials evoked by synapses on the dendrites of pyramidal cells in the rat hippocampus in vitro. , 1987, The Journal of physiology.

[116]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[117]  J. Miller,et al.  Synaptic amplification by active membrane in dendritic spines , 1985, Brain Research.

[118]  A. Pellionisz,et al.  A computer model of cerebellar purkinje cells , 1977, Neuroscience.

[119]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[120]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. , 1994, Journal of neurophysiology.

[121]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[122]  U. Heinemann,et al.  Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. , 1995, Journal of neurophysiology.

[123]  G. Shepherd,et al.  Comparisons between Active Properties of Distal Dendritic Branches and Spines: Implications for Neuronal Computations , 1989, Journal of Cognitive Neuroscience.

[124]  R. Llinás,et al.  Calcium conductances in Purkinje cell dendrites: their role in development and integration. , 1979, Progress in brain research.

[125]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[126]  J. Hell,et al.  Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit , 1992, Neuron.

[127]  O Herreras,et al.  Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. , 1990, Journal of neurophysiology.

[128]  B. Hille Ionic channels of excitable membranes , 2001 .

[129]  Barry W. Connors,et al.  Functions of very distal dendrites: experimental and computational studies of layer 1 synapses on neocortical pyramidal cells , 1992 .

[130]  R. J. Sayer,et al.  Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[131]  J. Cooley,et al.  Digital computer solutions for excitation and propagation of the nerve impulse. , 1966, Biophysical journal.

[132]  H. Markram,et al.  Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[133]  D. Prince,et al.  Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. , 1991, Cerebral cortex.

[134]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[135]  Hyperpolarization-activated Na(+)-K+ current (Ih) in neocortical neurons is blocked by external proteolysis and internal TEA. , 1994, Journal of neurophysiology.

[136]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[137]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[138]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[139]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[140]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.