Magnetic Nanocomposite Cilia Tactile Sensor

A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor's high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

[1]  Yonggang Huang,et al.  Multifunctional Epidermal Electronics Printed Directly Onto the Skin , 2013, Advanced materials.

[2]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[3]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Beccai,et al.  Flexible Three‐Axial Force Sensor for Soft and Highly Sensitive Artificial Touch , 2014, Advanced materials.

[5]  Ja Hoon Koo,et al.  Highly Skin‐Conformal Microhairy Sensor for Pulse Signal Amplification , 2014, Advanced materials.

[6]  I. Russell,et al.  Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier , 2008, Nature Neuroscience.

[7]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[8]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[9]  T. Meydan,et al.  Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG , 2006, IEEE Sensors Journal.

[10]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[11]  U. Chung,et al.  Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array , 2014, Advanced materials.

[12]  Thomas Steinmann,et al.  Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors , 2010, Journal of The Royal Society Interface.

[13]  O Yilmazoglu,et al.  Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing. , 2012, Nanotechnology.

[14]  Andrew G. Gillies,et al.  Carbon nanotube active-matrix backplanes for conformal electronics and sensors. , 2011, Nano letters.

[15]  J. Kosel,et al.  Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder , 2012 .

[16]  Zhibin Yu,et al.  Large‐Area Compliant Tactile Sensors Using Printed Carbon Nanotube Active‐Matrix Backplanes , 2015, Advanced materials.

[17]  J. Kosel,et al.  A magnetic nanocomposite for biomimetic flow sensing. , 2014, Lab on a chip.

[18]  T. Trung,et al.  A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature , 2014, Advanced materials.

[19]  F. Huo,et al.  Microstructured graphene arrays for highly sensitive flexible tactile sensors. , 2014, Small.

[20]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[21]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Jun Sun,et al.  Cytotoxicity and cellular uptake of iron nanowires. , 2010, Biomaterials.

[23]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[24]  Yonggang Huang,et al.  Silicon nanomembranes for fingertip electronics , 2012, Nanotechnology.

[25]  Bodong Li,et al.  Optimization of Autonomous Magnetic Field Sensor Consisting of Giant Magnetoimpedance Sensor and Surface Acoustic Wave Transducer , 2012, IEEE Transactions on Magnetics.

[26]  Sung-hoon Ahn,et al.  A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. , 2012, Nature materials.

[27]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[28]  J. Kosel,et al.  Three dimensional simulation of giant magneto-impedance effect in thin film structures , 2011 .

[29]  M. Burrows,et al.  Interacting Gears Synchronize Propulsive Leg Movements in a Jumping Insect , 2013, Science.

[30]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[31]  L. V. Panina,et al.  Magneto-impedance in multilayer films , 2000 .

[32]  Ki-Uk Kyung,et al.  Polymer‐Waveguide‐Based Flexible Tactile Sensor Array for Dynamic Response , 2014, Advanced materials.

[33]  Nannan Chen,et al.  Hydrogel‐Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast , 2007 .

[34]  Bodong Li,et al.  Flexible magnetoimpedance sensor , 2015 .