Distinct Eligibility Traces for LTP and LTD in Cortical Synapses

[1]  栁下 祥 A critical time window for dopamine actions on the structural plasticity of dendritic spines , 2016 .

[2]  Georg B. Keller,et al.  Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex , 2015, Neuron.

[3]  Heydar Davoudi,et al.  Selective Activation of a Putative Reinforcement Signal Conditions Cued Interval Timing in Primary Visual Cortex , 2015, Current Biology.

[4]  J. A. Dani,et al.  Dopamine D1 and D5 Receptors Modulate Spike Timing-Dependent Plasticity at Medial Perforant Path to Dentate Granule Cell Synapses , 2014, The Journal of Neuroscience.

[5]  Matthew P. H. Gardner,et al.  Encoding and Tracking of Outcome-Specific Expectancy in the Gustatory Cortex of Alert Rats , 2014, The Journal of Neuroscience.

[6]  A. Kirkwood,et al.  Associative Hebbian Synaptic Plasticity in Primate Visual Cortex , 2014, The Journal of Neuroscience.

[7]  Cyriel M A Pennartz,et al.  In Vivo Two-Photon Ca2+ Imaging Reveals Selective Reward Effects on Stimulus-Specific Assemblies in Mouse Visual Cortex , 2013, The Journal of Neuroscience.

[8]  M. Bear,et al.  A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex , 2013, Neuron.

[9]  Elke Edelmann,et al.  Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus , 2013, Front. Neurosci..

[10]  Tommaso Patriarchi,et al.  β2-Adrenergic receptor supports prolonged theta tetanus-induced LTP. , 2012, Journal of neurophysiology.

[11]  A. Kirkwood,et al.  Pull-Push Neuromodulation of LTP and LTD Enables Bidirectional Experience-Induced Synaptic Scaling in Visual Cortex , 2012, Neuron.

[12]  G. Laurent,et al.  Conditional modulation of spike-timing-dependent plasticity for olfactory learning , 2012, Nature.

[13]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[14]  Timothy E. J. Behrens,et al.  Review Frontal Cortex and Reward-guided Learning and Decision-making Figure 1. Frontal Brain Regions in the Macaque Involved in Reward-guided Learning and Decision-making Finer Grained Anatomical Divisions with Frontal Cortical Systems for Reward-guided Behavior , 2022 .

[15]  J. Haynes,et al.  Perceptual Learning and Decision-Making in Human Medial Frontal Cortex , 2011, Neuron.

[16]  A. Zador,et al.  Auditory cortex mediates the perceptual effects of acoustic temporal expectation , 2010, Nature Neuroscience.

[17]  Jeffrey P. Gavornik,et al.  A network of spiking neurons that can represent interval timing: mean field analysis , 2011, Journal of Computational Neuroscience.

[18]  G. Berns,et al.  BAD TO WORSE , 1975, The Lancet.

[19]  Henning Sprekeler,et al.  Functional Requirements for Reward-Modulated Spike-Timing-Dependent Plasticity , 2010, The Journal of Neuroscience.

[20]  Rodrigo Andrade,et al.  The Accounting Review , 2001 .

[21]  Colin J. Akerman,et al.  In Vivo Spike-Timing-Dependent Plasticity in the Optic Tectum of Xenopus Laevis , 2010, Front. Syn. Neurosci..

[22]  J. Hell,et al.  Assembly of a β2‐adrenergic receptor—GluR1 signalling complex for localized cAMP signalling , 2010 .

[23]  P. Dayan,et al.  Opponency Revisited: Competition and Cooperation Between Dopamine and Serotonin , 2010, Neuropsychopharmacology.

[24]  Yonatan Loewenstein,et al.  Learning reward timing in cortex through reward dependent expression of synaptic plasticity , 2009, Proceedings of the National Academy of Sciences.

[25]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[26]  Aaron R. Seitz,et al.  Rewards Evoke Learning of Unconsciously Processed Visual Stimuli in Adult Humans , 2009, Neuron.

[27]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[28]  A. Kirkwood,et al.  Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity , 2007, Neuron.

[29]  E. Izhikevich Solving the distal reward problem through linkage of STDP and dopamine signaling , 2007, BMC Neuroscience.

[30]  J. Wijnholds,et al.  Opposite effects of PSD-95 and MPP3 PDZ proteins on serotonin 5-hydroxytryptamine2C receptor desensitization and membrane stability. , 2006, Molecular biology of the cell.

[31]  Mark F Bear,et al.  Reward timing in the primary visual cortex. , 2006, Science.

[32]  Hee-Sup Shin,et al.  Multiple Receptors Coupled to Phospholipase C Gate Long-Term Depression in Visual Cortex , 2005, The Journal of Neuroscience.

[33]  Florentin Wörgötter,et al.  Temporal Sequence Learning, Prediction, and Control: A Review of Different Models and Their Relation to Biological Mechanisms , 2005, Neural Computation.

[34]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[35]  K. R. Ridderinkhof,et al.  Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning , 2004, Brain and Cognition.

[36]  Philippe Marin,et al.  The Serotonin 5-HT2A and 5-HT2C Receptors Interact with Specific Sets of PDZ Proteins* , 2004, Journal of Biological Chemistry.

[37]  X. F. Wang,et al.  Long term potentiation varies with layer in rat visual cortex , 2003, Brain Research.

[38]  Wickliffe C Abraham,et al.  Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory , 2003, Progress in Neurobiology.

[39]  Wulfram Gerstner,et al.  Intrinsic Stabilization of Output Rates by Spike-Based Hebbian Learning , 2001, Neural Computation.

[40]  V Avdonin,et al.  A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. , 2001, Science.

[41]  J. Bockaert,et al.  Interaction of Serotonin 5-Hydroxytryptamine Type 2C Receptors with PDZ10 of the Multi-PDZ Domain Protein MUPP1* , 2001, The Journal of Biological Chemistry.

[42]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[43]  M. Bear,et al.  Modulation of Long-Term Synaptic Depression in Visual Cortex by Acetylcholine and Norepinephrine , 1999, The Journal of Neuroscience.

[44]  J. A. Anderson,et al.  Talking Nets: An Oral History Of Neural Networks , 1998, IEEE Trans. Neural Networks.

[45]  J. Lisman,et al.  D1/D5 Dopamine Receptor Activation Increases the Magnitude of Early Long-Term Potentiation at CA1 Hippocampal Synapses , 1996, The Journal of Neuroscience.

[46]  John S. Edwards,et al.  The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence , 1983 .

[47]  Wg Lehnert,et al.  THE HEDONISTIC NEURON - A THEORY OF MEMORY, LEARNING, AND INTELLIGENCE - KLOPF,AH , 1983 .

[48]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[49]  T. Crow Cortical Synapses and Reinforcement: a Hypothesis , 1968, Nature.

[50]  C. L. Hull Principles of behavior : an introduction to behavior theory , 1943 .