A Categorical Setting for Lower Complexity

A polarized strong category consists of a cartesian category, X, and a category Y, together with a module M:XxY->Y equipped with a strong composition and identities. These categories can be used to provide an abstract setting for investigating computational setting with complexity below primitive recursive. This paper develops the theory of polarized strong categories, explains how they relate to the theory of fibrations, and provides a concrete example which illustrates their applicability to these lower complexity systems of computation.

[1]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[2]  R. Cockett,et al.  Strong categorical datatypes I , 1991 .

[3]  Martin Hofmann,et al.  Type Systems For Polynomial-time Computation , 1999 .

[4]  Daniel Leivant,et al.  Stratified functional programs and computational complexity , 1993, POPL '93.

[5]  Luigi Santocanale A Calculus of Circular Proofs and Its Categorical Semantics , 2002, FoSSaCS.

[6]  Lane A. Hemaspaandra SIGACT news complexity theory column 48 , 2005, SIGA.

[7]  Martin Hofmann,et al.  Quantitative Models and Implicit Complexity , 2005, FSTTCS.

[8]  Jean-Marc Andreoli Focussing and proof construction , 2001, Ann. Pure Appl. Log..

[9]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[10]  Robert Paré,et al.  Monoidal categories with natural numbers object , 1989, Stud Logica.

[11]  M. Barr,et al.  Complexity doctrines , 1995 .

[12]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[13]  Gilles Dowek,et al.  Principles of programming languages , 1981, Prentice Hall International Series in Computer Science.

[14]  Philip J. Scott,et al.  A categorical semantics for polarized MALL , 2007, Ann. Pure Appl. Log..

[15]  Daniel Leivant,et al.  Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space , 1994, CSL.

[16]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[17]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[18]  A. Kock Strong functors and monoidal monads , 1972 .

[19]  R. A. G. Seely,et al.  POLARIZED CATEGORY THEORY, MODULES, AND GAME SEMANTICS , 2007 .

[20]  Varmo Vene,et al.  CATEGORICAL PROGRAMMING WITH INDUCTIVE AND COINDUCTIVE TYPES , 2000 .

[21]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[22]  Richard James. Wood Indical methods for relative categories. , 1976 .

[23]  Olivier Laurent Polarized games , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.