Uniform Interpolation for Monotone Modal Logic

We reconstruct the syntax and semantics of monotone modal logic, in the style of Moss' coalgebraic logic. To that aim, we replace the box and diamond with a modality nabla which takes a finite collection of finite sets of formulas as its argument. The semantics of this modality in monotone neighborhood models is defined in terms of a version of relation lifting that is appropriate for this setting. We prove that the standard modal language and our r -based one are effectively equi-expressive, meaning that there are effective translations in both directions. We prove and discuss some algebraic laws that govern the interaction of nabla with the Boolean operations. These laws enable us to rewrite each formula into a special kind of disjunctive normal form that we call transparent. For such transparent formulas it is relatively easy to define the bisimulation quantifiers that one may associate with our notion of relation lifting. This allows us to prove the main result of the paper, viz., that monotone modal logic enjoys the property of uniform interpolation.

[1]  Rohit Parikh,et al.  Game Logic - An Overview , 2003, Stud Logica.

[2]  Leon Henkin,et al.  An extension of the Craig-Lyndon interpolation theorem , 1963, Journal of Symbolic Logic.

[3]  Marco Hollenberg,et al.  Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.

[4]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[5]  D. Harrison,et al.  Vicious Circles , 1995 .

[6]  Greg Restall Logic: An Introduction , 2005 .

[7]  Marta Bílková,et al.  Uniform Interpolation and Propositional Quantifiers in Modal Logics , 2007, Stud Logica.

[8]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[9]  Tim French,et al.  Bisimulation quantifiers for modal logics , 2006 .

[10]  Christoph Schubert,et al.  Extensions in the theory of lax algebras , 2010 .

[11]  Silvio Ghilardi,et al.  An Algebraic Theory of Normal Forms , 1995, Ann. Pure Appl. Log..

[12]  Alessandra Palmigiano,et al.  Proof systems for the coalgebraic cover modality , 2008, Advances in Modal Logic.

[13]  Helle Hvid Hansen,et al.  Monotonic modal logics , 2003 .

[14]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[15]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[16]  Willem Conradie,et al.  Definitorially Complete Description Logics , 2006, KR.

[17]  Frank Wolter,et al.  Advances in Modal Logic 3 , 2002 .

[18]  Helle Hvid Hansen,et al.  Neighbourhood Structures: Bisimilarity and Basic Model Theory , 2009, Log. Methods Comput. Sci..

[19]  A. Visser Uniform interpolation and layered bisimulation , 1996 .

[20]  Silvio Ghilardi,et al.  Undefinability of propositional quantifiers in the modal system S4 , 1995, Stud Logica.

[21]  Giovanna D'Agostino Interpolation in non-classical logics , 2008, Synthese.

[22]  Plantage Muidergracht Commitment-Based Decision Making for Bounded Agents Olivier Roy ? Institute for Logic , Language and Computation , 2006 .

[23]  G. D’Agostino,et al.  On modal mu-calculus with explicit interpolants , 2006, J. Appl. Log..

[24]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 2002, JACM.

[25]  Robert Goldblatt,et al.  A Kripke-Joyal Semantics for Noncommutative Logic in Quantales , 2006, Advances in Modal Logic.

[26]  Yde Venema,et al.  Completeness of the finitary Moss logic , 2008, Advances in Modal Logic.

[27]  George Markowsky,et al.  Free Completely Distributive Lattices , 1979 .

[28]  A. Nerode,et al.  Composita, equations, and freely generated algebras , 1959 .

[29]  Moshe Y. Vardi On the complexity of epistemic reasoning , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[30]  R. Parikh The logic of games and its applications , 1985 .

[31]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[32]  Alexandru Baltag,et al.  A Logic for Coalgebraic Simulation , 2000, CMCS.

[33]  Helle Hvid Hansen,et al.  A Coalgebraic Perspective on Monotone Modal Logic , 2004, CMCS.

[34]  Luigi Santocanale A duality for finite lattices , 2009 .

[35]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.