Coupling of meshfree methods with finite elements : Basic concepts and test results

This paper reviews several novel and older methods for coupling meshfree particle methods, particularly the elementfree Galerkin (EFG) method and the Smooth Particle Hydrodynamics (SPH), with finite elements. We study master slave couplings where particles are fixed across the finite element boundary, coupling via interface shape functions such that consistency conditions are satisfied, bridging domain coupling, compatibility coupling with Lagrange multipliers and hybrid coupling methods where forces from the particles are applied via their shape functions on the FE nodes and vice versa. The hybrid coupling methods are well suited for large deformations and adaptivity and the coupling procedure is independent from the particle distance and nodal arrangement. We will study the methods for several static and dynamic applications, compare the results to analytical and experimental data and show advantages and drawbacks of the methods. Copyright c © 2000 John Wiley & Sons, Ltd.

[1]  Hui-Ping Wang,et al.  A Lagrangian reproducing kernel particle method for metal forming analysis , 1998 .

[2]  Hiroshi Kadowaki,et al.  A multiscale approach for the micropolar continuum model , 2005 .

[3]  Wing Kam Liu,et al.  Reproducing kernel and wavelet particle methods , 1993 .

[4]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Ted Belytschko,et al.  Application of Particle Methods to Static Fracture of Reinforced Concrete Structures , 2006 .

[6]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[7]  Gregory J. Wagner,et al.  Hierarchical enrichment for bridging scales and mesh-free boundary conditions , 2001 .

[8]  D Dries Hegen,et al.  Element-free Galerkin methods in combination with finite element approaches , 1996 .

[9]  Ted Belytschko,et al.  Material stability analysis of particle methods , 2005, Adv. Comput. Math..

[10]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[11]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[12]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[13]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[14]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[15]  Antonio Huerta,et al.  Enrichment and coupling of the finite element and meshless methods , 2000 .

[16]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[17]  Martin W. Heinstein,et al.  Coupling of smooth particle hydrodynamics with the finite element method , 1994 .

[18]  Wing Kam Liu,et al.  A comparison of two formulations to blend finite elements and mesh-free methods , 2004 .

[19]  Weimin Han,et al.  Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a mesh‐free method , 2002 .

[20]  Wing Kam Liu,et al.  Moving particle finite element method with global smoothness , 2004 .

[21]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[22]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[23]  R. A. Uras,et al.  Enrichment of the Finite Element Method With the Reproducing Kernel Particle Method , 1995 .

[24]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[25]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[26]  Martin Sauer Adaptive Kopplung des Netzfreien SPH-Verfahrens mit Finiten Elementen zur Berechnung von Impaktvorgaengen(Adaptive Coupling of the Mesh-Free SPH-Method with Finite Elements for the Calculation of Impact Events) , 2000 .

[27]  Shaofan Li,et al.  Reproducing kernel element method. Part IV: Globally compatible Cn (n ≥ 1) triangular hierarchy , 2004 .

[28]  Weimin Han,et al.  Reproducing kernel element method Part II: Globally conforming Im/Cn hierarchies , 2004 .

[29]  Hiroshi Kadowaki,et al.  Bridging multi-scale method for localization problems , 2004 .

[30]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[31]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[32]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[33]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[34]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[35]  M. J. Forrestal,et al.  Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths , 1992 .

[36]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[37]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[38]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[39]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[40]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[41]  T. Rabczuk,et al.  Simulation of high velocity concrete fragmentation using SPH/MLSPH , 2003 .

[42]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[43]  G. R. Johnson,et al.  Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations , 1994 .

[44]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .