Blended Cured Quasi-Newton for Geometric Optimization

Optimizing deformation energies over a mesh, in two or three dimensions, is a common and critical problem in physical simulation and geometry processing. We present three new improvements to the state of the art: a barrier-aware line-search filter that cures blocked descent steps due to element barrier terms and so enables rapid progress; an energy proxy model that adaptively blends the Sobolev (inverse-Laplacian-processed) gradient and L-BFGS descent to gain the advantages of both, while avoiding L-BFGS's current limitations in geometry optimization tasks; and a characteristic gradient norm providing a robust and largely mesh- and energy-independent convergence criterion that avoids wrongful termination when algorithms temporarily slow their progress. Together these improvements form the basis for Blended Cured Quasi-Newton (BCQN), a new geometry optimization algorithm. Over a wide range of problems over all scales we show that BCQN is generally the fastest and most robust method available, making some previously intractable problems practical while offering up to an order of magnitude improvement in others.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[3]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[4]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[5]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[6]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[7]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[8]  Roi Poranne,et al.  Provably good planar mappings , 2014, ACM Trans. Graph..

[9]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[10]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[11]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[12]  R. Rivlin Some Applications of Elasticity Theory to Rubber Engineering , 1997 .

[13]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[14]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[15]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[16]  Tobias Martin,et al.  Efficient Non‐linear Optimization via Multi‐scale Gradient Filtering , 2013, Comput. Graph. Forum.

[17]  J. Neuberger Steepest descent and differential equations , 1985 .

[18]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[19]  A. Bower Applied Mechanics of Solids , 2009 .

[20]  Cosmin G. Petra,et al.  An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization , 2014, SIAM J. Sci. Comput..

[21]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[22]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[23]  D. Rose,et al.  Generalized nested dissection , 1977 .

[24]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[25]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[26]  Mihai Anitescu,et al.  Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers , 2014, Computing in Science & Engineering.

[27]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[28]  H. Shum,et al.  Subspace gradient domain mesh deformation , 2006, SIGGRAPH 2006.

[29]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[30]  Wolfgang Fichtner,et al.  PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation , 2001, Future Gener. Comput. Syst..

[31]  Mirela Ben-Chen,et al.  Planar shape interpolation with bounded distortion , 2013, ACM Trans. Graph..

[32]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[33]  Jorge Nocedal,et al.  On the Behavior of Broyden's Class of Quasi-Newton Methods , 1992, SIAM J. Optim..

[34]  Zohar Levi,et al.  On the convexity and feasibility of the bounded distortion harmonic mapping problem , 2016, ACM Trans. Graph..

[35]  Roi Poranne,et al.  Seamless surface mappings , 2015, ACM Trans. Graph..

[36]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[37]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[38]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[39]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[40]  Eitan Grinspun,et al.  Reflections on simultaneous impact , 2012, ACM Trans. Graph..

[41]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[42]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[43]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[44]  A. Fischer A special newton-type optimization method , 1992 .

[45]  Huamin Wang,et al.  A chebyshev semi-iterative approach for accelerating projective and position-based dynamics , 2015, ACM Trans. Graph..

[46]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[47]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[48]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[49]  宮川翔貴 ”Fast Simulation of Mass‐Spring Systems”の研究報告 , 2016 .

[50]  R. Ogden Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids , 1973 .

[51]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[52]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[53]  Denis Zorin,et al.  Strict minimizers for geometric optimization , 2014, ACM Trans. Graph..

[54]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[55]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[56]  Richard H. Byrd,et al.  A Preconditioned L-BFGS Algorithm with Application to Molecular Energy Minimization , 2004 .

[57]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[58]  James F. O'Brien,et al.  Updated sparse cholesky factors for corotational elastodynamics , 2012, TOGS.

[59]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[60]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[61]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[62]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[63]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[64]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[65]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..