Scalable Graph-Based Clustering With Nonnegative Relaxation for Large Hyperspectral Image

Hyperspectral image (HSI) clustering is very important in remote sensing applications. However, most graph-based clustering models are not suitable for dealing with large HSI due to their computational bottlenecks: the construction of the similarity matrix <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {W}$ </tex-math></inline-formula>, the eigenvalue decomposition of the graph Laplacian matrix <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {L}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-means or other discretization procedures. To solve this problem, we propose a novel approach, scalable graph-based clustering with nonnegative relaxation (SGCNR), to cluster the large HSI. The proposed SGCNR algorithm first constructs an anchor graph and then adds the nonnegative relaxation term. With this, the computational complexity can be reduced to <inline-formula> <tex-math notation="LaTeX">$O(nd\log m+nK^{2}+nKc+K^{3})$ </tex-math></inline-formula>, compared with traditional graph-based clustering algorithms that need at least <inline-formula> <tex-math notation="LaTeX">$O(n^{2}d+n^{2}K)$ </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">$O(n^{2}d+n^{3})$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$c$ </tex-math></inline-formula> are, respectively, the number of samples, features, anchors, classes, and nearest neighbors. In addition, the SGCNR algorithm can directly obtain the clustering indicators, without resort to <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-means or other discretization procedures as traditional graph-based clustering algorithms have to do. Experimental results on several HSI data sets have demonstrated the efficiency and effectiveness of the proposed SGCNR algorithm.

[1]  Rong Wang,et al.  Fast Spectral Clustering With Anchor Graph for Large Hyperspectral Images , 2017, IEEE Geoscience and Remote Sensing Letters.

[2]  M. Hestenes Multiplier and gradient methods , 1969 .

[3]  Xindong Wu,et al.  Learning on Big Graph: Label Inference and Regularization with Anchor Hierarchy , 2017, IEEE Transactions on Knowledge and Data Engineering.

[4]  Xinlei Chen,et al.  Large Scale Spectral Clustering Via Landmark-Based Sparse Representation , 2015, IEEE Transactions on Cybernetics.

[5]  Liangpei Zhang,et al.  Unsupervised remote sensing image classification using an artificial immune network , 2011 .

[6]  Xinlei Chen,et al.  Large Scale Spectral Clustering with Landmark-Based Representation , 2011, AAAI.

[7]  Feiping Nie,et al.  Improved MinMax Cut Graph Clustering with Nonnegative Relaxation , 2010, ECML/PKDD.

[8]  Tao Li,et al.  The Relationships Among Various Nonnegative Matrix Factorization Methods for Clustering , 2006, Sixth International Conference on Data Mining (ICDM'06).

[9]  Chao Li,et al.  Active multi-kernel domain adaptation for hyperspectral image classification , 2017, Pattern Recognit..

[10]  Liangpei Zhang,et al.  Kernel Sparse Subspace Clustering with a Spatial Max Pooling Operation for Hyperspectral Remote Sensing Data Interpretation , 2017, Remote. Sens..

[11]  Amnon Shashua,et al.  Doubly Stochastic Normalization for Spectral Clustering , 2006, NIPS.

[12]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  David G. Lowe,et al.  Scalable Nearest Neighbor Algorithms for High Dimensional Data , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[15]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[16]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[17]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[18]  Feiping Nie,et al.  Fast and Orthogonal Locality Preserving Projections for Dimensionality Reduction. , 2017, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[19]  Ujjwal Maulik,et al.  Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery , 2009, Pattern Recognit..

[20]  Wei Liu,et al.  Large Graph Construction for Scalable Semi-Supervised Learning , 2010, ICML.

[21]  Liangpei Zhang,et al.  Adaptive Multiobjective Memetic Fuzzy Clustering Algorithm for Remote Sensing Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Liangpei Zhang,et al.  An Adaptive Memetic Fuzzy Clustering Algorithm With Spatial Information for Remote Sensing Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  Xuelong Li,et al.  Unsupervised Large Graph Embedding , 2017, AAAI.

[24]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[25]  Feiping Nie,et al.  New l2, 1-Norm Relaxation of Multi-Way Graph Cut for Clustering , 2018, AAAI.

[26]  Erzsébet Merényi,et al.  A Validity Index for Prototype-Based Clustering of Data Sets With Complex Cluster Structures , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Qian Du,et al.  Simultaneous Spatial and Spectral Low-Rank Representation of Hyperspectral Images for Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Feiping Nie,et al.  Learning A Structured Optimal Bipartite Graph for Co-Clustering , 2017, NIPS.

[29]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[30]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[31]  Pingxiang Li,et al.  Reweighted mass center based object-oriented sparse subspace clustering for hyperspectral images , 2016 .

[32]  Xinbo Gao,et al.  Triplet-Based Deep Hashing Network for Cross-Modal Retrieval , 2018, IEEE Transactions on Image Processing.

[33]  Liangpei Zhang,et al.  Automatic Fuzzy Clustering Based on Adaptive Multi-Objective Differential Evolution for Remote Sensing Imagery , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  Daoqiang Zhang,et al.  Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[35]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[36]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[37]  Xuelong Li,et al.  Fast Spectral Clustering with efficient large graph construction , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Spectral methods for graph clustering - A survey , 2011, Eur. J. Oper. Res..

[39]  Rongrong Ji,et al.  Nonnegative Spectral Clustering with Discriminative Regularization , 2011, AAAI.

[40]  Saeid Homayouni,et al.  An Improved FCM Algorithm Based on the SVDD for Unsupervised Hyperspectral Data Classification , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Chao Li,et al.  Active Transfer Learning Network: A Unified Deep Joint Spectral–Spatial Feature Learning Model for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[43]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[44]  Liangpei Zhang,et al.  Spectral–Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Antonio J. Plaza,et al.  A New Sparse Subspace Clustering Algorithm for Hyperspectral Remote Sensing Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[46]  Nicolas Gillis,et al.  Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.