A test for normality of observations and regression residuals

Summary Using the Lagrange multiplier procedure or score test on the Pearson family of distributions we obtain tests for normality of observations and regression disturbances. The tests suggested have optimum asymptotic power properties and good finite sample performance. Due to their simplicity they should prove to be useful tools in statistical analysis.

[1]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[2]  R. Geary,et al.  Testing for Normality , 2003 .

[3]  E. S. Pearson Biometrika tables for statisticians , 1967 .

[4]  M. Kendall Theoretical Statistics , 1956, Nature.

[5]  H. Harter Expected values of normal order statistics , 1961 .

[6]  G. Box,et al.  Robustness to non-normality of regression tests , 1962 .

[7]  E S PEARSON,et al.  STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIV. SOME INCIDENTS IN THE EARLY HISTORY OF BIOMETRY AND STATISTICS, 1890-94. , 1961, Biometrika.

[8]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[9]  S. Shapiro,et al.  A Comparative Study of Various Tests for Normality , 1968 .

[10]  R. Byron The Restricted Aitken Estimation of Sets of Demand Relations , 1970 .

[11]  R. D'Agostino An omnibus test of normality for moderate and large size samples , 1971 .

[12]  S. Shapiro,et al.  An Approximate Analysis of Variance Test for Normality , 1972 .

[13]  J. K. Ord,et al.  Families of frequency distributions , 1973 .

[14]  R. D'Agostino,et al.  Approaches to the null distribution of √ b1 , 1973 .

[15]  E. S. Pearson,et al.  Tests for departure from normality. Empirical results for the distributions of b2 and √b1 , 1973 .

[16]  Ralph B. D'Agostino,et al.  Tests for Departure from Normality , 1973 .

[17]  B. Bolch,et al.  On the Testing of Regression Disturbances for Normality , 1974 .

[18]  S. Weisberg An empirical comparison of the percentage points of W and W , 1974 .

[19]  L. Shenton,et al.  Omnibus test contours for departures from normality based on √b1 and b2 , 1975 .

[20]  E. S. Pearson,et al.  Tests for departure from normality: Comparison of powers , 1977 .

[21]  L. Godfrey,et al.  REGRESSION EQUATIONS WHEN THE REGRESSORS INCLUDE LAGGED DEPENDENT VARIABLES , 1978 .

[22]  R. Hogg An Introduction to Robust Estimation , 1979 .

[23]  Glenn M. MacDonald,et al.  Some Large-Sample Tests for Nonnormality in the Linear Regression Model , 1980 .

[24]  Adrian Pagan,et al.  The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics , 1980 .

[25]  S. Arnold Asymptotic Validity of F Tests for the Ordinary Linear Model and the Multiple Correlation Model , 1980 .

[26]  Anil K. Bera,et al.  Model specification tests: A simultaneous approach☆ , 1982 .

[27]  J. Royston Expected Normal Order Statistics (Exact and Approximate) , 1982 .

[28]  J. Royston An Extension of Shapiro and Wilk's W Test for Normality to Large Samples , 1982 .

[29]  D. Pierce,et al.  Testing normality of errors in regression models , 1982 .