Exploiting resistive cross-point array for compact design of physical unclonable function

This work presents the optimized design of a physical unclonable function (PUF) primitive based on the cross-point resistive random access memory (RRAM) array. The randomness of the PUF comes from the resistance variation of RRAM cells in the array. A four-cell selection scheme is proposed to create a large number of challenge-response pairs necessary for achieving a high security level. To analyze the performance of the PUF with respect to uniqueness and reliability, the RRAM cross-point array is fabricated and the device parameters are calibrated from the experimental data. Our study shows that the RRAM PUF can function properly across a wide temperature range without degradation in the performance. However, IR drop due to the interconnect resistance in the array can potentially hamper the performance. To mitigate the effect of IR drop, a reverse scaling rule on the feature size (F) is proposed for RRAM PUF. While this increases the area of the RRAM PUF, it improves the PUF performance significantly. Compared to a conventional SRAM PUF in 45nm node, a RRAM PUF array size of 1024×1024 with relaxed F=200nm has -45% lower area, while offering better robustness against invasive and side-channel attacks.

[1]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[2]  Miodrag Potkonjak,et al.  Hardware security strategies exploiting nanoelectronic circuits , 2013, 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC).

[3]  Srinivas Devadas,et al.  PUF Modeling Attacks on Simulated and Silicon Data , 2013, IEEE Transactions on Information Forensics and Security.

[4]  M. Stutzmann,et al.  Applications of High-Capacity Crossbar Memories in Cryptography , 2011, IEEE Transactions on Nanotechnology.

[5]  Jean-Pierre Seifert,et al.  Cloning Physically Unclonable Functions , 2013, 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[6]  Cong Xu,et al.  NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Meng-Fan Chang,et al.  An Offset-Tolerant Fast-Random-Read Current-Sampling-Based Sense Amplifier for Small-Cell-Current Nonvolatile Memory , 2013, IEEE Journal of Solid-State Circuits.

[8]  Chip-Hong Chang,et al.  Highly reliable memory-based Physical Unclonable Function using Spin-Transfer Torque MRAM , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[9]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[10]  An Chen,et al.  Utilizing the Variability of Resistive Random Access Memory to Implement Reconfigurable Physical Unclonable Functions , 2015, IEEE Electron Device Letters.

[11]  Ahmad-Reza Sadeghi,et al.  Memristor PUFs: A new generation of memory-based Physically Unclonable Functions , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[12]  Srinivas Devadas,et al.  Physical Unclonable Functions and Applications: A Tutorial , 2014, Proceedings of the IEEE.

[13]  Miodrag Potkonjak,et al.  Nano-PPUF: A Memristor-Based Security Primitive , 2012, 2012 IEEE Computer Society Annual Symposium on VLSI.

[14]  Garrett S. Rose,et al.  A write-time based memristive PUF for hardware security applications , 2013, 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[15]  Chip-Hong Chang,et al.  Feasibility study of emerging non-volatilememory based physical unclonable functions , 2014, 2014 IEEE 6th International Memory Workshop (IMW).

[16]  James F. Plusquellic,et al.  A non-volatile memory based physically unclonable function without helper data , 2014, 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[17]  Chip-Hong Chang,et al.  Exploiting Process Variations and Programming Sensitivity of Phase Change Memory for Reconfigurable Physical Unclonable Functions , 2014, IEEE Transactions on Information Forensics and Security.

[18]  H.-S. Philip Wong,et al.  Effect of Wordline/Bitline Scaling on the Performance, Energy Consumption, and Reliability of Cross-Point Memory Array , 2013, JETC.

[19]  Ulrich Rührmair,et al.  PUFs at a glance , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[20]  Shimeng Yu,et al.  Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model , 2011 .