Perovskite Photovoltaics for Dim‐Light Applications

The use of photovoltaic cells with an organometallic perovskite as the active layer for indoor dim-light energy harvesting is evaluated. By designing the electron-transporting materials and fabrication processes, the traps in the perovskite active layers and carrier dynamics can be controlled, and efficient devices are demonstrated. The best-performing small-area perovskite photovoltaics exhibit a promising high power conversion efficiency up to ≈27.4%, no hysteresis behavior, and an exceptionally low maximum power point voltage variation of ≈0.1 V under fluorescent lamp illumination at 100–1000 lux. The 5.44 cm2 large-area device also shows a high efficiency of 20.4% and a promising long-term stability. Compared with the most efficient inorganic and organic solar cells nowadays, the competitive efficiency, low fabrication cost, and low raw material costs make perovskite photovoltaics ideal for indoor light harvesting and as Internet of Things power provider.

[1]  Miaoyu Li,et al.  An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material , 2014 .

[2]  Yang Yang,et al.  A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells , 2015 .

[3]  Tae‐Woo Lee,et al.  Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self‐Organized Polymeric Hole Extraction Layers with High Work Function , 2014, Advanced materials.

[4]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[5]  Imrich Chlamtac,et al.  Internet of things: Vision, applications and research challenges , 2012, Ad Hoc Networks.

[6]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[7]  Jie Zheng,et al.  Bulk heterojunction perovskite hybrid solar cells with large fill factor , 2015 .

[8]  Gholamreza Arab Markadeh,et al.  A Hybrid Control Method for Maximum Power Point Tracking (MPPT) in Photovoltaic Systems , 2014 .

[9]  Nevzat Onat,et al.  Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems , 2010 .

[10]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[11]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[12]  Che-Wei Huang,et al.  A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications , 2013, 2013 Symposium on VLSI Circuits.

[13]  Konrad Wojciechowski,et al.  Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. , 2014, Nano letters.

[14]  Christian C. Enz,et al.  WiseNET: an ultralow-power wireless sensor network solution , 2004, Computer.

[15]  Christoph J. Brabec,et al.  Organic photovoltaics for low light applications , 2011 .

[16]  Mohamed Orabi,et al.  On-chip integrated power management MPPT controller utilizing cell-level architecture for PV solar system , 2015 .

[17]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[18]  Y. Hu Novel Meso‐Superstructured Solar Cells with a High Efficiency Exceeding 12% , 2014, Advanced materials.

[19]  C. Chu,et al.  Preparation of metal halide perovskite solar cells through a liquid droplet assisted method , 2015 .

[20]  N. Park Perovskite solar cells: Switchable photovoltaics. , 2015, Nature materials.

[21]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[22]  Yihong Chen,et al.  Pyridine-based electron transporting materials for highly efficient organic solar cells , 2013 .

[23]  Elizabeth von Hauff,et al.  Study of field effect mobility in PCBM films and P3HT : PCBM blends , 2005 .

[24]  B. de Boer,et al.  Effect of traps on the performance of bulk heterojunction organic solar cells , 2007 .

[25]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[26]  Rajan Jose,et al.  A perspective on the production of dye-sensitized solar modules , 2014 .

[27]  Omer Yaffe,et al.  Trap states in lead iodide perovskites. , 2015, Journal of the American Chemical Society.

[28]  L. Reindl,et al.  Maximum efficiencies of indoor photovoltaic devices , 2013, IEEE Journal of Photovoltaics.

[29]  Manel Gasulla,et al.  A simple and efficient MPPT method for low-power PV cells , 2014 .

[30]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[31]  E Fred Schubert,et al.  Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions. , 2009, Optics express.

[32]  Chang-Lyoul Lee,et al.  Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[33]  Fedwa El-Mellouhi,et al.  Charge carrier mobility in hybrid halide perovskites , 2014, Scientific Reports.

[34]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[35]  James C. Blakesley,et al.  Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells , 2011 .

[36]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[37]  D. Blaauw,et al.  AlGaAs Photovoltaics for Indoor Energy Harvesting in mm-Scale Wireless Sensor Nodes , 2015, IEEE Transactions on Electron Devices.

[38]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[39]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[40]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[41]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[42]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[43]  Yi‐Hung Liu,et al.  Benzochalcogenodiazole-based donor-acceptor-acceptor molecular donors for organic solar cells. , 2014, ChemSusChem.

[44]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[45]  S. Zakeeruddin,et al.  Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. , 2015, ACS nano.

[46]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[47]  P.L. Chapman,et al.  Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques , 2007, IEEE Transactions on Energy Conversion.

[48]  A. Fujiwara,et al.  C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition , 2003 .

[49]  Shuzi Hayase,et al.  Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 Layers , 2014 .

[50]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[51]  Alison Burdett,et al.  Ultra-Low-Power Wireless Systems: Energy-Efficient Radios for the Internet of Things , 2015, IEEE Solid-State Circuits Magazine.