Absolute quantification of cerebral blood flow in normal volunteers: Correlation between Xe‐133 SPECT and dynamic susceptibility contrast MRI

To compare absolute cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast MRI (DSC‐MRI) and Xe‐133 SPECT.

[1]  J. Risberg,et al.  Regional Cerebral Blood Flow by 133 Xenon Inhalation , 1975 .

[2]  Richard S. J. Frackowiak,et al.  Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. , 1990, Brain : a journal of neurology.

[3]  Anne L. Martel,et al.  Extracting parametric images from dynamic contrast-enhanced MRI studies of the brain using factor analysis , 2001, Medical Image Anal..

[4]  J. Risberg,et al.  Regional Cerebral Blood Flow by 133Xenon Inhalation: Preliminary Evaluation of an Initial Slope Index in Patients with Unstable Flow Compartments , 1975, Stroke.

[5]  W. J. Lorenz,et al.  Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. , 1994, Radiology.

[6]  R Frayne,et al.  Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies , 2004, Magnetic resonance in medicine.

[7]  W. Lin,et al.  Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: A PET and MR study , 2001, Journal of magnetic resonance imaging : JMRI.

[8]  V. Kiselev,et al.  Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation , 2006, Magnetic resonance in medicine.

[9]  E. Ryding,et al.  Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT , 2000, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine.

[10]  W. Obrist,et al.  Regional cerebral blood flow estimated by 133-xenon inhalation. , 1975, Stroke.

[11]  Anne M. Smith,et al.  Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: Repeatabilily and comparison with PET in humans , 2005, NeuroImage.

[12]  L. K. Hansen,et al.  Defining a local arterial input function for perfusion MRI using independent component analysis , 2004, Magnetic resonance in medicine.

[13]  B. Rosen,et al.  Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix , 2003, Magnetic resonance in medicine.

[14]  K. Zierler Equations for Measuring Blood Flow by External Monitoring of Radioisotopes , 1965, Circulation research.

[15]  D. Gadian,et al.  Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition , 2000, Magnetic resonance in medicine.

[16]  K. Zierler,et al.  On the theory of the indicator-dilution method for measurement of blood flow and volume. , 1954, Journal of applied physiology.

[17]  Richard Frayne,et al.  Reassessing the clinical efficacy of two MR quantitative DSC PWI CBF algorithms following cross-calibration with PET images , 2005, Physics in medicine and biology.

[18]  P. Johannsen,et al.  Cerebral Blood Flow Measurements by Magnetic Resonance Imaging Bolus Tracking: Comparison with [15O]H2O Positron Emission Tomography in Humans , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  F. Ståhlberg,et al.  Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques , 2000, Magnetic resonance in medicine.

[20]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[21]  E. Larsson,et al.  Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis , 2006, Journal of magnetic resonance imaging : JMRI.

[22]  K. B. Larson,et al.  Simultaneous MR Acquisition of Arterial and Brain Signal‐Time Curves , 1992, Magnetic resonance in medicine.

[23]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[24]  Richard Frayne,et al.  The impact of partial‐volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging , 2005, Journal of magnetic resonance imaging : JMRI.

[25]  C B Grandin,et al.  Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: Implementation and application to data acquired from hyperacute stroke patients , 2000, Journal of magnetic resonance imaging : JMRI.

[26]  I. Buvat,et al.  Perfusion-weighted MR imaging studies in brain hypervascular diseases: comparison of arterial input function extractions for perfusion measurement. , 2006, AJNR. American journal of neuroradiology.

[27]  U Piepgras,et al.  Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. , 1999, Journal of computer assisted tomography.

[28]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results , 1996, Magnetic resonance in medicine.

[29]  S. Felber,et al.  The Impact of Peak Saturation of the Arterial Input Function on Quantitative Evaluation of Dynamic Susceptibility Contrast-Enhanced MR Studies , 2000, Journal of computer assisted tomography.

[30]  M. Viergever,et al.  Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI , 2001, Magnetic resonance in medicine.

[31]  L. Axel Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. , 1980, Radiology.

[32]  Thomas Benner,et al.  Effect of using local arterial input functions on cerebral blood flow estimation , 2006, Journal of magnetic resonance imaging : JMRI.

[33]  K Scheffler,et al.  Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. , 2000, Magnetic resonance imaging.

[34]  V G Kiselev On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI , 2001, Magnetic resonance in medicine.