Sodium-beta alumina batteries: Status and challenges

This paper provides a review of materials and designs for sodium-beta alumina battery technology and discusses the challenges ahead for further technology improvement. Sodium-beta alumina batteries have been extensively developed in recent years and encouraging progress in performance and cycle life has been achieved. The battery is composed of an anode, typically molten sodium, and a cathode that can be molten sulfur (Na-S battery) or a transition metal halide incorporated with a liquid phase secondary electrolyte (e.g., ZEBRA battery). In most cases the electrolyte is a dense solid β″-Al2O3 sodium ion-conducting membrane. The issues prohibiting widespread commercialization of sodium-beta alumina technology are related to the materials and methods of manufacturing that impact cost, safety, and performance characteristics.

[1]  R. J. Bones,et al.  Development of a Ni , NiCl2 Positive Electrode for a Liquid Sodium (ZEBRA) Battery Cell , 1989 .

[2]  C. Beevers,et al.  The Crystal Structure of “Beta Alumina” Na2O·11Al2O3 , 1937 .

[3]  A. Virkar,et al.  High Temperature Sodium - Zinc Chloride Batteries With Sodium Beta - Alumina Solid Electrolyte , 2007 .

[4]  D. Crișan,et al.  The influence of the powders synthesis method on the microstructure of lanthanum-stabilized β-alumina ceramics , 1985 .

[5]  G. Farrington,et al.  Ionic conductivity in Na+, K+, and Ag+ β″-alumina , 1980 .

[6]  A. Virkar,et al.  Wetting characteristics of sodium on β″-alumina and on nasicon , 1982 .

[7]  Anil V. Virkar,et al.  Resistivity‐Microstructure Relations in Lithia‐Stabilized Polycrystalline β”‐Alumina , 1978 .

[8]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[9]  T. Gnanasekaran,et al.  Low-temperature synthesis of β-aluminas by a sol-gel technique , 1997 .

[10]  R. C. Galloway A Sodium/Beta‐Alumina/Nickel Chloride Secondary Cell , 1987 .

[11]  Anil V. Virkar,et al.  Fracture Properties of Polycrystalline Lithia-Stabilized β“- Alumina , 1977 .

[12]  E. Subbarao,et al.  Synthesis of sodium and ? alumina , 1975 .

[13]  A. Kingon,et al.  The synthesis of beta alumina from aluminium hydroxide and oxyhydroxide precursors , 1993 .

[14]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[15]  R. S. Gordon,et al.  Hot‐Pressing of Li2O‐Stabilized β″‐Alumina , 1974 .

[16]  A. Hooper A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis , 1977 .

[17]  R. C. Galloway,et al.  A Sodium/Iron(II) Chloride Cell with a Beta Alumina Electrolyte , 1987 .

[18]  R. C. Galloway,et al.  The ZEBRA electric vehicle battery: power and energy improvements , 1999 .

[19]  K. Terabe,et al.  Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides , 1987 .

[20]  J. Bates,et al.  Non-Debye capacitance in single-crystal sodium beta-alumina☆ , 1980 .

[21]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .

[22]  Development program for solid electrolyte batteries , 1975 .

[23]  Takehiko Takahashi,et al.  ß-Al2O3 synthesis from m-Al2O3 , 1980 .

[24]  The control of the resistance rise of sodium sulphur cells , 1981 .

[25]  J. L. Sudworth,et al.  The sodium/nickel chloride (ZEBRA) battery , 2001 .

[26]  P. Morgan Low temperature synthetic studies of beta-aluminas , 1976 .

[27]  N. Dudney,et al.  Composition, ion-ion correlations and conductivity of beta″-alumina , 1981 .

[28]  P. Sarkar,et al.  The mechanical and electrical properties of ZrO2-Naβ″-Al2O3 composites , 1988 .

[29]  J. Bates,et al.  Ionic conductivity of sodium beta″-alumina , 1981 .

[30]  Arnold van Zyl,et al.  Review of the zebra battery system development , 1996 .

[31]  J. Coetzer,et al.  A new high energy density battery system , 1986 .

[32]  Strength improvement in beta″ alumina by incorporation of zirconia , 1988 .

[33]  B. Dunn,et al.  Asymmetric behavior of beta″-alumina , 1980 .

[34]  T. Whalen,et al.  Relation of Properties to Microstructure in β″‐Alumina Ceramic , 1974 .

[35]  N. Baffier,et al.  Conductivity of ion rich β and β″ alumina: Sodium and potassium compounds , 1981 .

[36]  A. Virkar,et al.  Transfomation toughening of β″-alumina by incorporation of zirconia , 1983 .

[37]  W. Bragg,et al.  The Structure of β Alumina , 1931 .

[38]  J. S. Fordyce,et al.  Conductivity of Boules of Single‐Crystal Sodium Beta‐Alumina , 1975 .

[39]  D. Demott Resistance Rise in Sodium‐Sulphur Cells , 1980 .

[40]  D. J. Green,et al.  Properties of slip-cast transformation-toughened β''−Al2O3/ZrO2 composites , 1984 .

[41]  R. Armstrong,et al.  The A.C. impedance of single crystal sodium β-alumina , 1976 .

[42]  P. Nicholson,et al.  The relative stability of spray-frozen/freeze-dried β″-Al2O3 powders , 1980 .

[43]  M. Bettman,et al.  Crystal structure of Na2O.MgO.5Al2O3 [sodium oxide-magnesia-alumina] with reference to Na2O.5Al2O3 and other isotypal compounds , 1969 .

[44]  A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base) , 2008 .

[45]  P. Moseley,et al.  Stability of beta alumina electrolyte in sodium/FeCl/sub 2/ (Zebra) cells , 1989 .

[46]  R. S. Gordon,et al.  Relative Effects of Phase Conversion and Grain Size on Sodium Ion Conduction in Polycrystalline, Lithia‐Stabilized β‐Alumina , 1978 .

[47]  D. J. Green Transformation toughening and grain size control inβ″-Al2O3/ZrO2 composites , 1985 .

[48]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[49]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[50]  J. L. Sudworth,et al.  The sodium/sulphur battery , 1984 .

[51]  E. Sonder Ionic Transference Numbers and Electrical Conduction in MgAl2O4 Spinel , 1983 .

[52]  J. Binner,et al.  Improvement in the mechanical properties of polycrystalline beta-alumina via the use of zirconia particles containing stabilizing oxide additions , 1985 .

[53]  M. Whittingham,et al.  Measurement of Sodium Ion Transport in Beta Alumina Using Reversible Solid Electrodes , 1971 .