Experimental study and simulation of plastic deformation of zirconia-based ceramics in a pulsed electric current apparatus

[1]  M. Cologna,et al.  Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics , 2011 .

[2]  T. Langdon Seventy-five years of superplasticity: historic developments and new opportunities , 2009 .

[3]  M. Herrmann,et al.  Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST) , 2009 .

[4]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[5]  T. Albers High-Temperature Properties of Nuclear Graphite , 2009 .

[6]  K. Vanmeensel,et al.  Pulsed electric current sintering of electrically conductive ceramics , 2008 .

[7]  H. Conrad,et al.  Effect of DC electric field on the tensile deformation of ultrafine-grained 3Y-TZP at 1450-1600 °C , 2007 .

[8]  Dustin M. Hulbert,et al.  Spark plasma sintering: A high strain rate low temperature forming tool for ceramics , 2007 .

[9]  Jun-ting Luo,et al.  Superplastic Sinter-Forging of Fine-Grained Si3N4-Si2N2O Composite at Low Temperature , 2007 .

[10]  F. Wakai,et al.  Superplastic Flow of Silicon Nitride-Based Nanocomposite at High Strain Rates , 2007 .

[11]  K. Vanmeensel Field assisted sintering of zirconia-based, electrically conductive ceramic composites , 2007 .

[12]  K. Vanmeensel,et al.  The influence of percolation during pulsed electric current sintering of ZrO2-TiN powder compacts with varying TiN content , 2007 .

[13]  F. Tietz,et al.  Influence of impurities on the conductivity of composites in the system (3YSZ)1−x–(MgO)x , 2005 .

[14]  K. Vanmeensel,et al.  Modelling of the temperature distribution during field assisted sintering , 2005 .

[15]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[16]  J. Groza,et al.  Temperature evolution during field activated sintering , 2004 .

[17]  Y. Sakka,et al.  High-Strain-Rate Superplasticity in Oxide Ceramics , 2004 .

[18]  M. Nygren,et al.  Formidable Increase in the Superplasticity of Ceramics in the Presence of an Electric Field , 2003 .

[19]  K. Morita,et al.  Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol.% yttria , 2002 .

[20]  A. Domínguez-Rodríguez,et al.  Heterogeneous junction of yttria partially stabilized zirconia by superplastic flow , 1998 .

[21]  B. Bollen,et al.  Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature , 1997 .

[22]  R. Munro Material Properties of a Sintered α-SiC , 1997 .

[23]  H. Conrad,et al.  Influence of an electric field on the superplastic deformation of 3Y-TZP , 1997 .

[24]  Jeffrey Wadsworth,et al.  Superplasticity in metals and ceramics , 1997 .

[25]  J. Wittenauer Applications of Ceramic Superplasticity Challenges and Opportunities , 1996 .

[26]  J. Celis,et al.  Laboratory testing of displacement and load induced fretting , 1995 .

[27]  P. Ettmayer,et al.  Solid state properties of group IVb carbonitrides , 1995 .

[28]  Xin Wu,et al.  Superplastic Bulging of Fine‐Grained Zirconia , 1990 .

[29]  S. Sakaguchi,et al.  Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals , 1986 .

[30]  R. McDonald Heat Content and Heat Capacity of an Extruded Graphite from 341° to 1723° K. , 1965 .