Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina

Neurons often integrate information from multiple parallel signaling streams. How a neuron combines these inputs largely determines its computational role in signal processing. Experimental assessment of neuronal signal integration, however, is often confounded by cell-intrinsic nonlinear processes that arise after signal integration has taken place. To overcome this problem and determine how ganglion cells in the salamander retina integrate visual contrast over space, we used automated online analysis of recorded spike trains and closed-loop control of the visual stimuli to identify different stimulus patterns that give the same neuronal response. These iso-response stimuli revealed a threshold-quadratic transformation as a fundamental nonlinearity within the receptive field center. Moreover, for a subset of ganglion cells, the method revealed an additional dynamic nonlinearity that renders these cells particularly sensitive to spatially homogeneous stimuli. This function is shown to arise from a local inhibition-mediated dynamic gain control mechanism.

[1]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[2]  C. Enroth-Cugell,et al.  The receptive‐field spatial structure of cat retinal Y cells. , 1987, The Journal of physiology.

[3]  John R Huguenard,et al.  Barrel Cortex Microcircuits: Thalamocortical Feedforward Inhibition in Spiny Stellate Cells Is Mediated by a Small Number of Fast-Spiking Interneurons , 2006, The Journal of Neuroscience.

[4]  A Kawana,et al.  Short- and long-range synchronous activities in dimming detectors of the frog retina , 1999, Visual Neuroscience.

[5]  Tim Gollisch,et al.  Energy Integration Describes Sound-Intensity Coding in an Insect Auditory System , 2002, The Journal of Neuroscience.

[6]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[7]  D. A. Burkhardt,et al.  Contrast enhancement and distributed encoding by bipolar cells in the retina. , 1998, Journal of neurophysiology.

[8]  F. Rieke,et al.  Noise correlations improve response fidelity and stimulus encoding , 2010, Nature.

[9]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[10]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[11]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[12]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[13]  K. Kratz,et al.  Visual latency of ganglion X- and Y-cells: A comparison with geniculate X- and Y-cells , 1987, Vision Research.

[14]  Stephen A. Baccus,et al.  A Retinal Circuit That Computes Object Motion , 2008, The Journal of Neuroscience.

[15]  R. Shapley,et al.  Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. , 1979, The Journal of physiology.

[16]  M. Tachibana,et al.  Synchronized retinal oscillations encode essential information for escape behavior in frogs , 2005, Nature Neuroscience.

[17]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[18]  A L Towe,et al.  Extracellular microelectrode sampling bias. , 1970, Experimental neurology.

[19]  M. Deschenes,et al.  Feedforward Inhibition Determines the Angular Tuning of Vibrissal Responses in the Principal Trigeminal Nucleus , 2010, The Journal of Neuroscience.

[20]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[21]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[22]  Frank S Werblin,et al.  Three forms of spatial temporal feedforward inhibition are common to different ganglion cell types in rabbit retina. , 2010, Journal of neurophysiology.

[23]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[24]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[25]  D. Dacey,et al.  Y-Cell Receptive Field and Collicular Projection of Parasol Ganglion Cells in Macaque Monkey Retina , 2008, The Journal of Neuroscience.

[26]  Tim Gollisch,et al.  Disentangling Sub-Millisecond Processes within an Auditory Transduction Chain , 2005, PLoS biology.

[27]  J. Victor The dynamics of the cat retinal Y cell subunit. , 1988, The Journal of physiology.

[28]  Tim Gollisch,et al.  From response to stimulus: adaptive sampling in sensory physiology , 2007, Current Opinion in Neurobiology.

[29]  Gilles Laurent,et al.  Using noise signature to optimize spike-sorting and to assess neuronal classification quality , 2002, Journal of Neuroscience Methods.

[30]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[31]  Fan Gao,et al.  Functional Architecture of Synapses in the Inner Retina: Segregation of Visual Signals by Stratification of Bipolar Cell Axon Terminals , 2000, The Journal of Neuroscience.

[32]  B. Strowbridge,et al.  Role of Cortical Feedback in Regulating Inhibitory Microcircuits , 2009, Annals of the New York Academy of Sciences.

[33]  Botond Roska,et al.  Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. , 2006, Journal of neurophysiology.

[34]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[35]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[36]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[37]  A. Mariani,et al.  Photoreceptors of the larval tiger salamander retina , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  Saskia E. J. de Vries,et al.  Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On , 2007, PLoS biology.

[39]  D. A. Burkhardt,et al.  Responses of ganglion cells to contrast steps in the light-adapted retina of the tiger salamander , 1998, Visual Neuroscience.

[40]  Alyosha C. Molnar,et al.  Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission , 2009, Journal of Computational Neuroscience.

[41]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[42]  F. Rieke,et al.  Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2 , 2011, The Journal of general physiology.

[43]  Mark S. Cembrowski,et al.  A Synaptic Mechanism for Retinal Adaptation to Luminance and Contrast , 2011, The Journal of Neuroscience.

[44]  Michael J. Berry,et al.  Functional organization of ganglion cells in the salamander retina. , 2006, Journal of neurophysiology.

[45]  D M Sherry,et al.  Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina , 1998, Visual Neuroscience.

[46]  L. Lagnado,et al.  Synaptic Depression and the Kinetics of Exocytosis in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[47]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[48]  J. Diamond,et al.  Vesicle depletion and synaptic depression at a mammalian ribbon synapse. , 2006, Journal of neurophysiology.