Memetic Algorithm timetabling for non-commercial sport leagues

Abstract We address the automatic generation of timetables for non-commercial sport leagues. By example of table-tennis we stress the particularity of non-commercial leagues, namely the limited access to sport facilities and temporary non-availability of sportsmen. For this problem class we propose a Memetic Algorithm backed by a constraint propagation based heuristic. The order of variable instantiation for this heuristic is evolved adaptively by means of a co-evolutionary approach.

[1]  Gilbert Laporte,et al.  Examination Timetabling: Algorithmic Strategies and Applications , 1994 .

[2]  Patrick D. Surry,et al.  Formal Memetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[3]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[4]  Martin Henz,et al.  Scheduling a Major College Basketball Conference - Revisited , 2001, Oper. Res..

[5]  Peter Ross,et al.  Improving Evolutionary Timetabling with Delta Evaluation and Directed Mutation , 1994, PPSN.

[6]  A. E. Eiben,et al.  Constraint-satisfaction problems. , 2000 .

[7]  C. Fleurent,et al.  Computer Aided Scheduling For A Sport League , 1991 .

[8]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[9]  Jin-Kao Hao,et al.  Solving the Sports League Scheduling Problem with Tabu Search , 2000, Local Search for Planning and Scheduling.

[10]  Janny Leung,et al.  Devising a Cost Effective Schedule for a Baseball League , 1994, Oper. Res..

[11]  James C. Bean,et al.  Reducing Travelling Costs and Player Fatigue in the National Basketball Association , 1980 .

[12]  Daniel Costa,et al.  An Evolutionary Tabu Search Algorithm And The NHL Scheduling Problem , 1995 .

[13]  Peter J. Stuckey,et al.  Programming with Constraints: An Introduction , 1998 .

[14]  P. Harker,et al.  Scheduling a Major College Basketball Conference , 1998 .

[15]  Andrea Schaerf,et al.  Scheduling Sport Tournaments using Constraint Logic Programming , 1999, Constraints.

[16]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[17]  Charles Fleurent,et al.  Allocating Games for the NHL Using Integer Programming , 1993, Oper. Res..

[18]  Shaul P. Ladany,et al.  Management science in sports , 1978 .

[19]  Jörn Schönberger,et al.  Automated timetable generation for rounds of a table-tennis league , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[20]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[21]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[22]  Jan A. M. Schreuder,et al.  Combinatorial aspects of construction of competition Dutch Professional Football Leagues , 1992, Discret. Appl. Math..

[23]  Peter Ross,et al.  Fast Practical Evolutionary Timetabling , 1994, Evolutionary Computing, AISB Workshop.

[24]  Stefan Minner,et al.  ILOG OPL Studio , 1999 .

[25]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[26]  Robert J Willis,et al.  Scheduling the Australian State Cricket Season Using Simulated Annealing , 1994 .

[27]  Marco Dorigo,et al.  Genetic Algorithms and Highly Constrained Problems: The Time-Table Case , 1990, PPSN.

[28]  Robert J Willis,et al.  Scheduling the Cricket World Cup—a Case Study , 1993 .

[29]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..