Instrumental variable methods for ARMA spectral estimation

The modified Yule-Walker technique of ARMA spectral estimation is shown to be a special case of the instrumental variable method of system identification. Several recursive instrumental variable algorithms are proposed for adaptive spectral estimation. An efficient lattice algorithm is presented for solving the modified Yule-Walker equations in the overdetermined case.

[1]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[2]  Benjamin Friedlander,et al.  Square-root covariance ladder algorithms , 1981, ICASSP.

[3]  Steven Kay,et al.  A new ARMA spectral estimator , 1980 .

[4]  J. Cadzow,et al.  High performance spectral estimation--A new ARMA method , 1980 .

[5]  L. Ljung,et al.  Fast calculation of gain matrices for recursive estimation schemes , 1978 .

[6]  Benjamin Friedlander A recursive maximum likelihood algorithm for ARMA spectral estimation , 1982, IEEE Trans. Inf. Theory.

[7]  Petre Stoica,et al.  Comparison of some instrumental variable methods - Consistency and accuracy aspects , 1981, Autom..

[8]  Peter C. Young,et al.  Comments on "On-line identification of linear dynamic systems with applications to Kalman filtering" , 1972 .

[9]  Will Gersch,et al.  Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series , 1970 .

[10]  Olav Reiersol,et al.  Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .

[11]  I. Rowe,et al.  Strongly consistent parameter estimation by the introduction of strong instrumental variables , 1974 .

[12]  Martin Morf,et al.  Fast Algorithms for Speech Modeling. , 1978 .

[13]  Benjamin Friedlander,et al.  Lattice implementation of some recursive parameter-estimation algorithms† , 1983 .

[14]  В. Friedlander,et al.  Lattice Implementation of Some Recursive Parameter Estimation Algorithms , 1982 .