Identification of Lukpq, a Novel, Equid-adapted Leukocidin of Staphylococcus Aureus Bicomponent Pore-forming Leukocidins Are a Family of Potent Toxins Secreted by Staphylococcus Aureus, Which Target White Blood Cells Preferentially and Consist of an S-and an F-component. the S-component Recognizes a

[1]  G. Minasov,et al.  Crystal structures of the components of the Staphylococcus aureus leukotoxin ED , 2016, Acta crystallographica. Section D, Structural biology.

[2]  F. Vandenesch,et al.  Differential Interaction of the Staphylococcal Toxins Panton–Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors , 2015, The Journal of Immunology.

[3]  V. Rutten,et al.  Bovine Staphylococcus aureus Secretes the Leukocidin LukMF′ To Kill Migrating Neutrophils through CCR1 , 2015, mBio.

[4]  István Reményi,et al.  The human transmembrane proteome , 2015, Biology Direct.

[5]  S. Foster,et al.  A single natural nucleotide mutation alters bacterial pathogen host-tropism , 2015, Nature Genetics.

[6]  István Reményi,et al.  Expediting topology data gathering for the TOPDB database , 2014, Nucleic Acids Res..

[7]  C. Day,et al.  The Staphylococcal Toxins γ-Hemolysin AB and CB Differentially Target Phagocytes by Employing Specific Chemokine Receptors , 2014, Nature Communications.

[8]  V. Torres,et al.  The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus , 2014, Microbiology and Molecular Reviews.

[9]  C. Torres,et al.  First Detection of Methicillin‐Resistant Staphylococcus aureus ST398 and Staphylococcus pseudintermedius ST68 from Hospitalized Equines in Spain , 2014, Zoonoses and public health.

[10]  A. Hoet,et al.  Molecular epidemiology of environmental MRSA at an equine teaching hospital: introduction, circulation and maintenance , 2014, Veterinary Research.

[11]  H. Hasman,et al.  Phylogenetic Analysis of Staphylococcus aureus CC398 Reveals a Sub-Lineage Epidemiologically Associated with Infections in Horses , 2014, PloS one.

[12]  T. Licka,et al.  Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. , 2014, Veterinary microbiology.

[13]  E. Medina,et al.  Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface , 2013, PLoS pathogens.

[14]  D. Lacy,et al.  Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. , 2013, Cell host & microbe.

[15]  J. Lindsay,et al.  Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[16]  L. Gama,et al.  Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. , 2013, Veterinary microbiology.

[17]  R. Nijland,et al.  Studying interactions of Staphylococcus aureus with neutrophils by flow cytometry and time lapse microscopy. , 2013, Journal of visualized experiments : JoVE.

[18]  F. Vandenesch,et al.  The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. , 2013, Cell host & microbe.

[19]  A. Nyman,et al.  Longitudinal study of horses for carriage of methicillin-resistant Staphylococcus aureus following wound infections. , 2013, Veterinary microbiology.

[20]  Y. Carmeli,et al.  Clonal transmission of a rare methicillin-resistant Staphylococcus aureus genotype between horses and staff at a veterinary teaching hospital. , 2013, Veterinary microbiology.

[21]  S. Nizza,et al.  A comparative evaluation of methicillin-resistant staphylococci isolated from harness racing-horses, breeding mares and riding-horses in Italy. , 2013, Asian Pacific journal of tropical biomedicine.

[22]  D. Myszka,et al.  CCR5 is a receptor for Staphylococcus aureus leukotoxin ED , 2012, Nature.

[23]  A. Boudabous,et al.  High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage , 2012, BMC Veterinary Research.

[24]  S. Opella,et al.  Structure of the Chemokine Receptor CXCR1 in Phospholipid Bilayers , 2012, Nature.

[25]  F. Vandenesch,et al.  Cross‐talk between Staphylococcus aureus leukocidins‐intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome‐dependent manner , 2012, Cellular microbiology.

[26]  H. Hotzel,et al.  Leukocidin genes lukF-P83 and lukM are associated with taphylococcus aureus clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany , 2012, Veterinary Research.

[27]  A. Aspán,et al.  The first nosocomial outbreak of methicillin-resistant Staphylococcus aureus in horses in Sweden , 2012, Acta Veterinaria Scandinavica.

[28]  K. Rigby,et al.  Neutrophils in innate host defense against Staphylococcus aureus infections , 2011, Seminars in Immunopathology.

[29]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[30]  V. Perreten,et al.  Evolution of multidrug-resistant Staphylococcus aureus infections in horses and colonized personnel in an equine clinic between 2005 and 2010. , 2011, Microbial drug resistance.

[31]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[32]  K. Rickards,et al.  CXCL8 attenuates chemoattractant-induced equine neutrophil migration. , 2011, Veterinary immunology and immunopathology.

[33]  M. Ellington,et al.  Distinct Bacteriophages Encoding Panton-Valentine Leukocidin (PVL) among International Methicillin-Resistant Staphylococcus aureus Clones Harboring PVL , 2010, Journal of Clinical Microbiology.

[34]  I. Lasa,et al.  Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI‐carried variants of von Willebrand factor‐binding protein , 2010, Molecular microbiology.

[35]  George R Ashley,et al.  The bovine chemokine receptors and their mRNA abundance in mononuclear phagocytes , 2010, BMC Genomics.

[36]  Jason Hinds,et al.  Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation , 2010, Genome biology and evolution.

[37]  A. Troelstra,et al.  Methicillin-resistant Staphylococcus aureus in horses and horse personnel: an investigation of several outbreaks. , 2010, Veterinary microbiology.

[38]  J. Weese,et al.  Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. , 2010, Veterinary microbiology.

[39]  R. Proctor,et al.  Staphylococcus aureus Panton-Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils , 2010, PLoS pathogens.

[40]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[41]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[42]  Changqin Hu,et al.  Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. , 2009, The Journal of antimicrobial chemotherapy.

[43]  F. Meyer,et al.  Analysis of the Specificity of Panton-Valentine Leucocidin and Gamma-Hemolysin F Component Binding , 2008, Infection and Immunity.

[44]  James M. Musser,et al.  Molecular Correlates of Host Specialization in Staphylococcus aureus , 2007, PloS one.

[45]  H. de Lencastre,et al.  Characterization of Staphylococcus aureus Isolates from Buffalo, Bovine, Ovine, and Caprine Milk Samples Collected in Rio de Janeiro State, Brazil , 2007, Applied and Environmental Microbiology.

[46]  P. Rainard,et al.  LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils. , 2006, Microbes and infection.

[47]  A. Bownik In vitro effects of staphylococcal leukocidin LukE/LukD on the proliferative ability of lymphocytes isolated from common carp (Cyprinus carpio L.). , 2006, Fish & shellfish immunology.

[48]  J. Kaneko,et al.  Leukotoxin family genes in Staphylococcus aureus isolated from domestic animals and prevalence of lukM-lukF-PV genes by bacteriophages in bovine isolates. , 2005, Veterinary microbiology.

[49]  H. Higuchi,et al.  Essential residues, W177 and R198, of LukF for phosphatidylcholine-binding and pore-formation by staphylococcal gamma-hemolysin on human erythrocyte membranes. , 2004, Journal of biochemistry.

[50]  Andreas Peschel,et al.  Chemotaxis Inhibitory Protein of Staphylococcus aureus, a Bacterial Antiinflammatory Agent , 2004, The Journal of experimental medicine.

[51]  T L Blundell,et al.  FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. , 2001, Journal of molecular biology.

[52]  P. Couppié,et al.  Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities , 1995, Infection and immunity.

[53]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.

[54]  Adeline R. Whitney,et al.  Neutrophil isolation from nonhuman species. , 2014, Methods in molecular biology.

[55]  S. Szmigielski,et al.  In vitro effect of staphylococcal leukocidins [LukE, LukD] on the proliferative responses of blood lymphocytes in dog [Canis familiaris] , 2003 .

[56]  P. H. Hofschneider,et al.  Current Topics in Microbiology and Immunology , 1981, Current Topics in Microbiology and Immunology.

[57]  Simon,et al.  Gal6, a G protein a subunit specifically expressed in hematopoietic cells , 2022 .