Bayesian decision feedback techniques for deconvolution

This paper examines reduced complexity symbol-by-symbol demodulation in the presence of ISI. A new algorithm is derived by simplifying the MAP estimator using conditional decision feedback. The resulting family of Bayesian conditional decision feedback estimators (BCDFE) are computationally and performance competitive with the maximum likelihood sequence estimation. The BCDFEs are indexed by two parameters: a "chip" length and an estimation lag. These algorithms can be used with estimation lags greater than the equivalent channel length, and have a complexity which is exponential in the chip length but only linear in the estimation lag. In the unknown channel case recursive channel estimation is combined with the BCDFE to produce a high performance equalizer. Extensive simulations characterize the performance of the BCDFE for uncoded linear modulation over both known and unknown channels.

[1]  Saul B. Gelfand,et al.  Bayesian techniques for deconvolution , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[2]  K. Giridhar,et al.  Bayesian algorithms for blind equalization using parallel adaptive filtering , 1994, IEEE Trans. Commun..

[3]  Nambi Seshadri,et al.  Joint data and channel estimation using blind trellis search techniques , 1994, IEEE Trans. Commun..

[4]  John J. Shynk,et al.  Fast dual-mode adaptive algorithms for the equalization and timing recovery of TDMA mobile radio signals , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[5]  John J. Shynk,et al.  Bayesian/decision-feedback algorithm for blind adaptive equalization , 1992 .

[6]  Ronald A. Iltis A Bayesian Maximum-Likelihood Sequence Estimation Algorithm for a priori Unknown Channels and Symbol Timing , 1992, IEEE J. Sel. Areas Commun..

[7]  Rodney A. Kennedy,et al.  Block decision feedback equalization , 1992, IEEE Trans. Commun..

[8]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[9]  Monisha Ghosh,et al.  Maximum-likelihood blind equalization , 1991, Optics & Photonics.

[10]  N. Seshadri,et al.  Joint data and channel estimation using fast blind trellis search techniques , 1990, [Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and Exhibition.

[11]  Stanley J. Simmons,et al.  Breadth-first trellis decoding with adaptive effort , 1990, IEEE Trans. Commun..

[12]  Alexandra Duel-Hallen,et al.  Delayed decision-feedback sequence estimation , 1989, IEEE Trans. Commun..

[13]  Shahid U. H. Qureshi,et al.  Reduced-state sequence estimation with set partitioning and decision feedback , 1988, IEEE Trans. Commun..

[14]  A. Benveniste,et al.  Blind Equalizers , 1984, IEEE Trans. Commun..

[15]  John B. Anderson,et al.  Sequential Coding Algorithms: A Survey and Cost Analysis , 1984, IEEE Trans. Commun..

[16]  John G. Proakis,et al.  Digital Communications , 1983 .

[17]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[18]  A. Benveniste,et al.  Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .

[19]  Y. Sato,et al.  A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation Systems , 1975, IEEE Trans. Commun..

[20]  C. Masreliez Approximate non-Gaussian filtering with linear state and observation relations , 1975 .

[21]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[22]  H. Kaufman,et al.  The Kalman Filter for the Equalization of a Digital Communications Channel , 1971 .

[23]  K. Abend,et al.  Statistical detection for communication channels with intersymbol interference , 1970 .