Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner

We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.

[1]  David E. Keyes,et al.  On long-time instabilities in staggered finite difference simulations of the seismic acoustic wave equations on discontinuous grids , 2018 .

[2]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[3]  Michelle Ghrist,et al.  Spatial Finite Difference Approximations for Wave-Type Equations , 1999, SIAM J. Numer. Anal..

[4]  Siyang Wang,et al.  Order-Preserving Interpolation for Summation-by-Parts Operators at Nonconforming Grid Interfaces , 2018, SIAM J. Sci. Comput..

[5]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[6]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[7]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[8]  Siyang Wang,et al.  High Order Finite Difference Methods for the Wave Equation with Non-conforming Grid Interfaces , 2015, Journal of Scientific Computing.

[9]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[12]  M. Wysession,et al.  An Introduction to Seismology, Earthquakes, and Earth Structure , 2002 .

[13]  Jing Gong,et al.  A stable hybrid method for hyperbolic problems , 2006, J. Comput. Phys..

[14]  Daniel J. Bodony,et al.  Accuracy of the Simultaneous-Approximation-Term Boundary Condition for Time-Dependent Problems , 2010, J. Sci. Comput..

[15]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[16]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[17]  David E. Keyes,et al.  SBP-SAT finite difference discretization of acoustic wave equations on staggered block-wise uniform grids , 2018, J. Comput. Appl. Math..

[18]  Martin Galis,et al.  The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures , 2014 .

[19]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[20]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[21]  Kenneth Duru,et al.  The Role of Numerical Boundary Procedures in the Stability of Perfectly Matched Layers , 2014, SIAM J. Sci. Comput..

[22]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[23]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[24]  Mark H. Carpenter,et al.  Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods , 2009, SIAM J. Sci. Comput..

[25]  Carlos Pantano,et al.  Nondissipative and energy-stable high-order finite-difference interface schemes for 2-D patch-refined grids , 2009, J. Comput. Phys..

[26]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[27]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[28]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[29]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[30]  Olsson,et al.  SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I , 2010 .

[31]  Xu Chang,et al.  Reverse Time Migration of Multiples , 2011 .

[32]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[33]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[34]  Gregor Gassner,et al.  Conservative and Stable Degree Preserving SBP Operators for Non-conforming Meshes , 2016, Journal of Scientific Computing.

[35]  Nail K. Yamaleev,et al.  Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions , 2013, J. Comput. Phys..

[36]  Vladimir A. Tcheverda,et al.  Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation , 2016, J. Comput. Phys..

[37]  Jan Nordström,et al.  On conservation and stability properties for summation-by-parts schemes , 2017, J. Comput. Phys..

[38]  Margot Gerritsen,et al.  Stability at Nonconforming Grid Interfaces for a High Order Discretization of the Schrödinger Equation , 2012, J. Sci. Comput..

[39]  Jan Nordström,et al.  Energy stable and high-order-accurate finite difference methods on staggered grids , 2017, J. Comput. Phys..

[40]  Jeremy E. Kozdon,et al.  Provably stable, general purpose projection operators for high-order finite difference methods , 2015 .

[41]  Anna Nissen,et al.  Stable Difference Methods for Block-Oriented Adaptive Grids , 2014, J. Sci. Comput..

[42]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[43]  Magnus Svärd,et al.  Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..

[44]  Jeremy E. Kozdon,et al.  Boundary conditions and stability of a perfectly matched layer for the elastic wave equation in first order form , 2015, J. Comput. Phys..

[45]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[46]  Ken Mattsson,et al.  A solution to the stability issues with block norm summation by parts operators , 2013, J. Comput. Phys..

[47]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[48]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[49]  David C. Del Rey Fernández,et al.  Corner-corrected diagonal-norm summation-by-parts operators for the first derivative with increased order of accuracy , 2017, J. Comput. Phys..

[50]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[51]  E. Baysal,et al.  Reverse time migration , 1983 .

[52]  Jan Nordström,et al.  High order finite difference methods for wave propagation in discontinuous media , 2006, J. Comput. Phys..

[53]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[54]  Shuo Ma,et al.  Hybrid Modeling of Elastic P-SV Wave Motion: A Combined Finite-Element and Staggered-Grid Finite-Difference Approach , 2004 .

[55]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[56]  Arnaud G. Malan,et al.  A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes , 2018, J. Comput. Phys..

[57]  K. Bathe Finite Element Procedures , 1995 .

[58]  Ken Mattsson,et al.  Compatible diagonal-norm staggered and upwind SBP operators , 2018, J. Comput. Phys..

[59]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .