Quantum annealing: next-generation computation and how to implement it when information is missing

Recently, several powerful machines dedicated to solving combinatorial optimization problems through the Ising-model formulation have appeared. The trigger for the paradigm shift to a specialized machine for solving optimization problems was the D-Wave machine, which implements quantum annealing. Quantum annealing employs quantum fluctuations to find an optimal solution to an optimization problem with discrete variables. In particular, we input the optimization problem in the form of the Ising Hamiltonian, which is a specialized form of the quadratic unconstrained binary optimization problem. However, when we employ quantum annealing for a practical optimization problem, there are several issues. One typical issue is absence of the detailed form of the cost function, which characterizes the optimization problem. To input problems into specialized machines for solving an optimization problem, it is necessary to determine the unknown parameters within the Ising model. We propose a method to estimate the unknown parameters in the Ising Hamiltonian using compressed sensing. Furthermore, we analyze the theoretical limitations of our proposed method by employing the replica method, which is a sophisticated tool in statistical mechanics.

[1]  Daniel Nagaj,et al.  Quantum speedup by quantum annealing. , 2012, Physical review letters.

[2]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[3]  Toshiyuki TANAKA Statistical-mechanics analysis of Gaussian labeled-unlabeled classification problems , 2013 .

[4]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[5]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[6]  Viktor Dotsenko,et al.  Introduction to the Replica Theory of Disordered Statistical Systems: Introduction , 2000 .

[7]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[8]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[9]  Masayuki Ohzeki,et al.  Nonequilibrium work on spin glasses in longitudinal and transverse fields , 2011, 1104.0484.

[10]  J. Gubernatis,et al.  Quantum Monte Carlo Methods: Algorithms for Lattice Models , 2016 .

[11]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[12]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[13]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[14]  Masayuki Ohzeki,et al.  Quantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealing , 2016, Scientific Reports.

[15]  M. W. Johnson,et al.  A scalable control system for a superconducting adiabatic quantum optimization processor , 2009, 0907.3757.

[16]  R. Monasson Optimization problems and replica symmetry breaking in finite connectivity spin glasses , 1997, cond-mat/9707089.

[17]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[18]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[19]  H. Nishimori,et al.  Quantum annealing with antiferromagnetic fluctuations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Masato Okada,et al.  Residual Energies after Slow Quantum Annealing , 2005 .

[21]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[22]  M. Hestenes Multiplier and gradient methods , 1969 .

[23]  Óscar Promio Muñoz Quantum Annealing in the transverse Ising Model , 2018 .

[24]  S. Stenholm Information, Physics and Computation, by Marc Mézard and Andrea Montanari , 2010 .

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  M. Ohzeki,et al.  Compressing Green's function using intermediate representation between imaginary-time and real-frequency domains , 2017, 1702.03054.

[27]  Shogo Yamanaka,et al.  Detection of cheating by decimation algorithm , 2014, ArXiv.

[28]  M. Ohzeki,et al.  Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data. , 2017, Physical review. E.

[29]  Masayuki Ohzeki,et al.  Quantum annealing with Jarzynski equality , 2011, Comput. Phys. Commun..

[30]  Yoshiyuki Kabashima,et al.  Erratum: A typical reconstruction limit of compressed sensing based on Lp-norm minimization , 2009, ArXiv.

[31]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[32]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[33]  Y. Kabashima A CDMA multiuser detection algorithm on the basis of belief propagation , 2003 .

[34]  Masayuki Ohzeki,et al.  L1-regularized Boltzmann machine learning using majorizer minimization , 2015, ArXiv.

[35]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[36]  Masayuki Ohzeki,et al.  Quantum annealing with Jarzynski equality , 2010, Comput. Phys. Commun..

[37]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[38]  Stephen J. Wright Coordinate descent algorithms , 2015, Mathematical Programming.

[39]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[40]  H. Nishimori,et al.  Mathematical foundation of quantum annealing , 2008, 0806.1859.

[41]  Masayuki Ohzeki,et al.  Nonequilibrium work performed in quantum annealing , 2011, 1102.2025.

[42]  Masayuki Ohzeki,et al.  Quantum annealing: An introduction and new developments , 2010, 1006.1696.

[43]  Travis S. Humble,et al.  Optimizing adiabatic quantum program compilation using a graph-theoretic framework , 2017, Quantum Information Processing.

[44]  M. W. Johnson,et al.  A scalable readout system for a superconducting adiabatic quantum optimization system , 2009, 0905.0891.